Multi-walled carbon nanotubes and ultrasound modified urea-formaldehyde resins: advantages of using for the production of magnetically processed composite plywood
Abstract and keywords
Abstract (English):
The role of multi-walled carbon nanotubes as a urea-formaldehyde binder modifier for the production of nanocomposite plywood has been investigated. Carbon nanotubes were introduced into the binder in an amount of 0.5 wt.%, 1.25 wt.% and 2 wt.%. The maximum effect is set at a content of 1.25 wt.% of the modifier in the resin: the tensile strength under static bending for modified plywood relative to unmodified increases by 58.1% (from 34.57 to 54.64), p<0.05, the tensile strength when chipping along the adhesive layer – by 80.3% (from 0.66 to 1.19), p<0.05. The environmental friendliness of nanomodified composite plywood was assessed by changes in the content of toxic formaldehyde in it: a decrease in the mass fraction of free formaldehyde in modified plywood was 59.9% (from 19.86 to 7.95), p<0.05, relative to unmodified. Thermogravimetrically, a higher thermal stability of the modified plywood sample was established, the destruction of which occurs at a higher temperature – 238 ˚C compared to the unmodified - 200 ˚C. The technology for producing nanocomposite plywood for activating the binder and plywood includes the processing of the binder – in an ultrasonic and plywood in a magnetic pulsed field. Thus, the role of multi-walled carbon nanotubes for obtaining higher-quality nanocomposite plywood has been established.

Keywords:
modification, composite plywood, multi-walled carbon nanotubes, pulsed magnetic field, ultrasonic field
Text
Publication text (PDF): Read Download
References

1. O.S.I Fayomi, Okwilagwe O., Agboola O., S.O Oyedepo, A.P.I Popoola. Assessment of composite materials in advance application: A mini overview. Materials Today: Proceedings. 2021; 38(5): 2402-2405. https://doi.org/10.1016/j.matpr.2020.07.344.

2. Churkina A. V. Analiz ispol'zovaniya fanery kak syr'ya. Forum molodyh uchenyh. 2019; 2(30): 1645-1648. URL: https://www.elibrary.ru/item.asp?id=38693672.

3. Nazarenko I. N., Nazarenko M. V. Sostoyanie i perspektivy razvitiya fanernogo proizvodstva // Upravlencheskiy uchet. 2022; № 1-2: 299-310. https://doi.org/10.25806/uu1-22022299-310.

4. Ponomarenko L. V., Kantieva E. V., Manukovskiy A. Yu. [i dr.]. Monitoring predela prochnosti na rastyazhenie luschenogo shpona i fanery nekotoryh listvennyh porod. Sistemy. Metody. Tehnologii. – 2023; № 4(60): 117-123. https://doi.org/10.18324/2077-5415-2023-4-117-123.

5. Chubinskiy A. N., Rusakov D. S., Varankina G. S. [i dr.]. Sovershenstvovanie tehnologii fanery. Lesa Rossii: politika, promyshlennost', nauka, obrazovanie : materialy Vserossiyskoy V nauchno-tehnicheskoy konferencii-vebinara, Sankt-Peterburg, 16–18 iyunya 2020 goda. Sankt-Peterburgskiy gosudarstvennyy lesotehnicheskiy universitet im. S.M. Kirova. Sankt-Peterburg: Politeh-Press. 2020; 289-291. URL: https://elibrary.ru/item.asp?id=44032222.

6. Wagenführ A., Buchelt B., Kairi M., Weber A. Veneers and Veneer-Based Materials. In: Niemz, P., Teischinger, A., Sandberg, D. (eds) Springer Handbook of Wood Science and Technology. Springer Handbooks. Springer, Cham. 2023; 1347-1407. https://doi.org/10.1007/978-3-030-81315-4_26

7. Keresa Defa Ayana, Chang-Sik Ha, Abubeker Yimam Ali. Comprehensive overview of wood polymer composite: Formulation and technology, properties, interphase modification, and characterization. Sustainable Materials and Technologies. 2024; 40: 00983. https://doi.org/10.1016/j.susmat.2024.e00983.

8. Erik Jungstedt, Marcus Vinícius Tavares Da Costa, Sören Östlund, Lars A. Berglund. On the high fracture toughness of wood and polymer-filled wood composites – Crack deflection analysis for materials design. Engineering Fracture Mechanics. 2024; 300: 109994. https://doi.org/10.1016/j.engfracmech.2024.109994.

9. Ali Dorieh, Peyman Pouresmaeel Selakjani, Mohammad Hassan Shahavi, Antonio Pizzi, Sogand Ghafari Movahed, Mohammad Farajollah Pour, Roozbeh Aghaei. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. International Journal of Adhesion and Adhesives. 2022; 114: 103106. https://doi.org/10.1016/j.ijadhadh.2022.103106.

10. Kantieva E.V., Ponomarenko L. V., Tomina E. V., Tomenko D. K. Vliyanie nanorazmernogo oksida kremniya na ekspluatacionnye harakteristiki fanery. Sistemy. Metody. Tehnologii. 2022; 3(55): 129-134. https://doi.org/10.18324/2077-5415-2022-3-129-134.

11. Ibrahim Khan, Khalid Saeed, Idrees Khan. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019; 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011.

12. María Alejandra Macías-Silva, Jeffrey Saúl Cedeño-Muñoz, Carlos Augusto Morales-Paredes, Rolando Tinizaray-Castillo, Galo Arturo Perero-Espinoza, Joan Manuel Rodríguez-Díaz, César Mauricio Jarre-Castro. Nanomaterials in construction industry: An overview of their properties and contributions in building house. Case Studies in Chemical and Environmental Engineering. 2024; 10: 100863. https://doi.org/10.1016/j.cscee.2024.100863.

13. G. Xu, J. Liang, B. Zhang et al. Performance and structures of urea-formaldehyde resins prepared with different formaldehyde solutions. Wood Sci Technol. 2021; 55: 1419–1437. https://doi.org/10.1007/s00226-021-01280-y.

14. Subasi N. T. Formaldehyde advantages and disadvantages: usage areas and harmful effects on human beings. Biochemical Toxicology-Heavy Metals and Nanomaterials. 2020; 89299. https://doi.org/10.5772/intechopen/89299.

15. Gao S., Liu Y., Wang C., Chu F., Xu F., Zhang D. Synthesis of lignin-based polyacid catalyst and its utilization to improve water resistance of urea–formaldehyde resins. Polymers. 2020; 12(1): 175. https://doi.org/10.3390/polym12010175.

16. Yifan Xu, Qianyu Zhang, Hong Lei, Xiaojian Zhou, Dawei Zhao, Guanben Du, Antonio Pizzi, Xuedong Xi. A formaldehyde-free amino resin alternative to urea-formaldehyde adhesives: A bio-based oxidized glucose – urea resin. Industrial Crops and Products. 2024; 218: 119037. https://doi.org/10.1016/j.indcrop.2024.119037.

17. Hamed Younesi-Kordkheili, Antonio Pizzi. Lignin-based wood adhesives: A comparison between the influence of soda and Kraft lignin. International Journal of Adhesion and Adhesives. 2023; 121: 103312. https://doi.org/10.1016/j.ijadhadh.2022.103312.

18. M. Hazwan Hussin, Nur Hanis Abd Latif, Tuan Sherwyn Hamidon et al. Latest advancements in high-performance bio-based wood adhesives: A critical review. Journal of Materials Research and Technology. 2022; 21: 3909-3946. https://doi.org/10.1016/j.jmrt.2022.10.156.

19. Anurag Wahane, Akash Sahu, Abhishek Verma, Twinkle Dewangan. Evaluation of the Physical and Mechanical Properties of Composite Board by Utilizing Agricultural Waste. Materials Today: Proceedings. 2023; 84: 16-23. https://doi.org/10.1016/j.matpr.2023.04.142.

20. Ramesh Karri, Reijo Lappalainen, Laura Tomppo, Ranjana Yadav. Bond quality of poplar plywood reinforced with hemp fibers and lignin-phenolic adhesives. Composites Part C: Open Access. 2022; 9: 100299. https://doi.org/10.1016/j.jcomc.2022.100299.

21. Zhengyong Yang, Zhigang Duan, Shi Yan, Haizhu Wu, Hui Huang, Lei He, Hisham Essawy, Heming Huang, Xiaojian Zhou, Xinyi Chen. Camellia oleifera shell powder and palm kernel meal as an environmentally-friendly, low-cost compound filler in MUF adhesive for plywood preparation. International Journal of Adhesion and Adhesives. 2024; 131: 103648. https://doi.org/10.1016/j.ijadhadh.2024.103648.

22. Ayfer Dönmez Çavdar. Effect of zeolite as filler in medium density fiberboards bonded with urea formaldehyde and melamine formaldehyde resins. Journal of Building Engineering. 2020; 27: 101000. https://doi.org/10.1016/j.jobe.2019.101000.

23. X. Li, Q. Gao, C. Xia, J. Li, X. Zhou. Urea Formaldehyde Resin Resultant Plywood with Rapid Formaldehyde Release Modified by Tunnel-Structured Sepiolite. Polymers. 2019; 11: 1286. https://doi.org/10.3390/polym11081286.

24. Wenyu Zheng, Tianle Hou, Jinhua Fan, Guangyu Wang, Chunyan Cai, Yuxuan Li, Jinsui Guanchang, Chunyu Liu, Yuzhu Chen, Hui Xiao. Study on surface grafting of hydroxyapatite and its influence on the properties of urea-formaldehyde resin. International Journal of Adhesion and Adhesives. 2024; 132: 103696. https://doi.org/10.1016/j.ijadhadh.2024.103696.

25. Rusakov D. S., Varankina G.S., Chubinskiy A.N. Svoystva modificirovannyh karbamido-i fenoloformal'degidnyh kleev dlya proizvodstva fanery. Lesa Rossii: politika, promyshlennost', nauka, obrazovanie : Materialy IV nauchno-tehnicheskoy konferencii, Sankt-Peterburg, 22–25 maya 2019 goda. – Sankt-Peterburg: Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Sankt-Peterburgskiy politehnicheskiy universitet Petra Velikogo". 2019; 242-245. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=38569780.

26. Furqan Choudhary, Priyal Mudgal, Adil Parvez, Pradakshina Sharma, Humaira Farooqi. A review on synthesis, properties and prospective applications of carbon nanomaterials. Nano-Structures & Nano-Objects. 2024; 38: 101186. https://doi.org/10.1016/j.nanoso.2024.101186.

27. Lishnih M. A. Vidy i svoystva nanokompozitov na osnove polimernyh materialov. Vestnik nauki. 2022; 6(51): 363-367. Rezhim dostupa: https://elibrary.ru/item.asp?id=48615669.

28. Yuschenko E.V., Bel'chinskaya L.I., Zhuzhukin K.V. Nanokompozitnaya eko-fanera: morfologicheskoe, ekologicheskoe, IK-spektroskopicheskoe obosnovaniya polucheniya. Lesotehnicheskiy zhurnal. 2024; 14(…): - . https://doi.org/10.34220/issn.2222-7962/2024.X/X.

29. G.L. Devnani, Shishir Sinha. Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Materials Today: Proceedings. 2019; 18(3): 647-654. https://doi.org/10.1016/j.matpr.2019.06.460.

30. Zahed Ahmadi. Epoxy in nanotechnology: A short review. Progress in Organic Coatings. 2019; 132: 445-448. https://doi.org/10.1016/j.porgcoat.2019.04.003.

31. Minjin Cai, Hehua Zhu, Timon Rabczuk, Xiaoying Zhuang. Investigation of mixing techniques for full-strength-grade engineered cementitious composites (ECCs): mechanical properties and microstructure. Journal of Building Engineering. 2024; 110136. https://doi.org/10.1016/j.jobe.2024.110136.

32. Iftikhar S., Shah P.M. & Mir M.S. Potential Application of Various Nanomaterials on the Performance of Asphalt Binders and Mixtures: A Comprehensive Review. Int. J. Pavement Res. Technol. 2023; 16: 1439–1467. https://doi.org/10.1007/s42947-022-00207-5.

33. Nanjun Chen, Arun Devaraj, Suveen N. Mathaudhu, Shenyang Hu. Atomic mixing mechanisms in nanocrystalline Cu/Ni composites under continuous shear deformation and thermal annealing. Journal of Materials Research and Technology. 2023; 27: 6792-6798. https://doi.org/10.1016/j.jmrt.2023.11.089.

34. Aleksandr Evhenovych Kolosov, Elena Petryvna Kolosova, Volodymyr Volodymyrovych Vanin, Anish Khan. 25 - Ultrasonic treatment in the production of classical composites and carbon nanocomposites. Editor(s): Anish Khan, Mohammad Jawaid, Inamuddin, Abdullah Mohamed Asiri. In Woodhead Publishing Series in Composites Science and Engineering. Nanocarbon and its Composites. Woodhead Publishing. 2019; 733-780. https://doi.org/10.1016/B978-0-08-102509-3.00025-0.

35. Mirsalehi S.A., Youzbashi A.A. & Sazgar A. Enhancement of out-of-plane mechanical properties of carbon fiber reinforced epoxy resin composite by incorporating the multi-walled carbon nanotubes. SN Appl. Sci. 2021; 3: 630. https://doi.org/10.1007/s42452-021-04624-2.

36. Yuschenko E.V. Magnitoobrabotannyy kompozicionnyy material dlya proizvodstva fanery na osnove uplotnennogo shpona osiny (Populus tremula L.) i kompleksnogo svyazuyuschego s nanokristallicheskoy cellyulozoy. Lesotehnicheskiy zhurnal. 2024; 14 (1): 219–237. https://doi.org/10.34220/issn.2222-7962/2024.1/13.

37. Shamaev V. A., Razin'kov E. M., Ischenko T. L. Povyshenie prochnosti skleivaniya shpona v tehnologii fanery. Drevesnye plity i fanera : teoriya i praktika : materialy XXIV Vserossiyskoy nauchno-prakticheskoy konferencii, Sankt-Peterburg, 17–18 marta 2021 goda / Sankt-Peterburgskiy gosudarstvennyy lesotehnicheskiy universitet imeni S. M. Kirova. – Sankt-Peterburg: Politeh-press. 2021; 117-120. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=45825903.

38. Hossein Khanjanzadeh, Rabi Behrooz, Nader Bahramifar, Stefan Pinkl, Wolfgang Gindl-Altmutter. Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites - MDF type. Carbohydrate Polymers. 2019; 206: 11-20. https://doi.org/10.1016/j.carbpol.2018.10.115.

39. Eko Setio Wibowo, Muhammad Adly Rahandi Lubis, Byung-Dae Park, Jong Sik Kim, Valerio Causin. Converting crystalline thermosetting urea–formaldehyde resins to amorphous polymer using modified nanoclay. Journal of Industrial and Engineering Chemistry. 2020; 87: 78-89. https://doi.org/10.1016/j.jiec.2020.03.014.

40. Pedro Henrique Gonzalez de Cademartori, Mirela Angelita Artner, Rilton Alves de Freitas, Washington Luiz Esteves Magalhães. Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Composites Part B: Engineering. 2019; 176: 107281. https://doi.org/10.1016/j.compositesb.2019.107281.

41. Daud S. Theory and Operational Principles of Carbon Nanotubes. In: Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. 2023; 7-35. https://doi.org/10.1007/978-981-99-4962-5_2.

42. Gul W., Alrobei H., Shah S.R.A., Khan A., Hussain A., Asiri A.M., Kim J. Effect of Embedment of MWCNTs for Enhancement of Physical and Mechanical Performance of Medium Density Fiberboard. Nanomaterials. 2021; 11(1): 29. https://doi.org/10.3390/nano11010029.

43. Łukawski D., Hochmańska-Kaniewska P., Janiszewska-Latterini D. et al. Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives. Wood Sci Technol. 2023; 57: 989–1037. https://doi.org/10.1007/s00226-023-01484-4.

44. Yuschenko, E. V. Uglerodnye nanotrubki: perspektivy ispol'zovaniya v promyshlennom proizvodstve / E. V. Yuschenko, K. V. Zhuzhukin // Aktual'nye problemy lesnogo kompleksa. 2023; 64: 303-308. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=54795616.

45. Hessameddin Yaghoobi, Abdolhossein Fereidoon. Preparation and characterization of short kenaf fiber-based biocomposites reinforced with multi-walled carbon nanotubes. Composites Part B: Engineering. 2019; 162: 314-322. https://doi.org/10.1016/j.compositesb.2018.11.015.

46. Abohamzeh E., Sheikholeslami M., Salehi, F. Carbon Nanotubes for Mechanical Applications. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. 2022; 1335- 1368. https://doi.org/10.1007/978-3-030-91346-5_27.

47. Salehi S., Maghmoomi F., Sahebian S., Zebarjad S., Lazzeri A. A study on the effect of carbon nanotube surface modification on mechanical and thermal properties of CNT/HDPE nanocomposite. Journal of Thermoplastic Composite Materials. 2021; 34(2): 203-220. https://doi.org/10.1177/0892705719838005.

48. Kord B., Ayrilmis N., Ghalehno M.D. Effect of fungal degradation on technological properties of carbon nanotubes reinforced polypropylene/rice straw composites. Polymers and Polymer Composites. 2021; 29(5): 303-310. https://doi.org/10.1177/0967391120915347.

49. Farsi M., Maashi Sani F., Ebadi M. et al. Effects of Functionalized Multi-walled Carbon Nanotubes on the Performance of Wood–Plastic Composites. Fibers Polym. 2024; 25: 309–316. https://doi.org/10.1007/s12221-023-00388-1.

50. Zhuzhukin K., Belchinskaya L., Yushchenko E., Tomina E., Tretyakov A. Research of the Properties of Plywood Based on Urea-Formaldehyde Binder with the Added Multi-Wall Carbon Nanotubes. Floresta e Ambiente. 2024; 31(3): 20240018. https://doi.org/10.1590/2179-8087-FLORAM-2024-0018.

51. Kexin Chen, Yuzhu Chen, Jinqiu Qi, Jiulong Xie, Xingyan Huang, Yongze Jiang, Shaobo Zhang, Shanshan Jia, Qi Chen, Hui Xiao. Thermal degradation and curing kinetic study of urea formaldehyde/l-tyrosine composites. International Journal of Adhesion and Adhesives. 2023; 127: 103493. https://doi.org/10.1016/j.ijadhadh.2023.103493.


Login or Create
* Forgot password?