ON THE POSSIBILITIES OF USING THE METHOD OF NEAR-PERIODIC ANALY-SIS FOR IMAGE PROCESSING
Abstract and keywords
Abstract (English):
The paper presents the application of the method of near-periodic analysis based on the shift function to the pro-cessing of data presented in the form of aerial images of the dynamics of cyclone activity. In the course of the study, spa-tial, temporal and spatiotemporal near-periodic analyses were carried out. The proposed method of near-periodic analysis based on the shift function showed the possibilities for performing spatial segmentation of the image in both Cartesian and polar coordinates, and also determined the existence of periodicity in the time scale of the dataset. Based on the results obtained, a spatiotemporal study of the da-taset with the final image segmentation was carried out. The existence of near-periods in the Cartesian system of spatial coordinates of the image is shown. The existence of near-periods in the Cartesian system of spatial coordinates of the image is shown. The substantiation of the fact that in the Cartesian coordinate system, almost periodic analysis in polar coordinates represents a qualitative rhythmic marking is presented. It is demonstrated that an almost periodic analysis based on a generalized shift function provides the possibility of using the studied data set in a time slice. The article presents a classification model for parts of the image, obtained on the basis of statistical estimates of slices of the generalized shift function of time series groupings, When using near-periodic analysis, the possibility of using it for spatial and temporal analysis of data obtained from aerial photography of the dynamics of cyclone activity is demonstrated

Keywords:
Data analysis methods, data with an ordered argument, trend, nonlinear fluctuations, near-period, image analysis
References

1. Kapkov, R. Yu. Rost ob'ema dannyh kak predposylka povysheniya cennosti dannyh v zadachah upravleniya / R. Yu. Kapkov // Mezhdunarodnyy elektronnyy zhurnal. Ustoychivoe razvitie: nauka i praktika. – 2020. – № 2(28). – S. 78-84.

2. Paramonov A.A., Kuzmin V.I., Dzerjinsky R.I. Analysis of almost-periodic and almost-proportional characteristics of a representative sample local minima time series // IOP Conference Series: Materials Science and Engineering. 2021. V. 1047. 012045. https://doi.org/10.1088/1757-899X/1047/1/012045.

3. Paramonov A.A. Analiz dinamiki makroekonomicheskih pokazateley Rossii / Pa-ramonov A.A., Kuz'min V.I. // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i tehnicheskie nauki. 2022. №11/2. S. 123-128. – DOIhttps://doi.org/10.37882/2223-2966.2022.11-2.24.

4. Dzerjinsky, R.I., Krynetsky, B.A., Chernorizova, N.V. (2021). The Changes Dynamics Analysis in the Japanese Stock Exchange Nikkei^225 Index in the Latest Time. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Data Science and Intelligent Systems. CoMeSySo. Lecture Notes in Networks and Systems, 2021. V. 231. Springer, Cham. https://doi.org/10.1007/978-3-030-90321-3_11.

5. Fathi M., Haghi Kashani M., Jameii S.M. Big Data Analytics in Weather Forecasting: A Systematic Review // Arch Computat Methods Eng. 2022. V. 29. P. 1247-1275. https://doi.org/10.1007/s11831-021-09616-4.

6. Paramonov A.A. Programmnyy kompleks obrabotki signalov, predstavlennyh ne-lineynymi kolebaniyami s trendom. / Paramonov A.A., Kuz'min V.I. // Opticheskie metody issledovaniya potokov: Trudy XVII Mezhdunarodnoy nauchno-tehnicheskoy konferencii, 26-30 iyunya 2023. – M. – S. 265-274.

7. Kuzmin V., Gadzaov A., Dzerjinsky R. Methods for data analysist. M.: Izdatel'stvo «Pero», 2021. 243 s.

8. He J., Yang K., Tang W., Qin J., Chen Y., Li X. The first high-resolution meteorological forcing dataset for land process studies over China // Sci Data. 2020. V. 7. 25. https://doi.org/10.1038/s41597-020-0369-y.

9. Miró Ò., Benito-Lozano M., Lopez-Ayala P., Gil V., Lopez-Ayala P., Mueller C., Traveria L., López-Hernández M.de los A., Yufera-Sanchez A., Strebel I., Rodríguez S., Llorens P., Espinosa B., Jacob J., Tost J., Alquézar-Arbé A., Burillo-Putze G. Influence of Meteorological Temperature and Pressure on the Severity of Heart Failure Decompensations // J. gen. intern. med. 2023. V. 38. P. 600-609. https://doi.org/10.1007/s11606-022-07743-7.

10. Varela-Lasheras I. The effects of weather and mobility on respiratory viruses dynamics before and during the COVID-19 pandemic in the USA and Canada // PLOS Digital Health. 2023. V. 2. №. 12. e0000405. https://doi.org/10.1371/journal.pdig.0000405.

11. Baskakov A.G., Krishtal I.A., Uskova N.B. On the spectral analysis of a differential operator with an involution and general boundary conditions // Eurasian Mathematical Journal. 2020. T. 11. № 2. S. 30-39. https://doi.org/10.32523/2077-9879-2020-11-2-30-39.

12. Jin H., Li M., Hopwood G., Hochman Z., Bakar K Sh. Improving early-season wheat yield forecasts driven by probabilistic seasonal climate forecasts // Agricultural and Forest Meteorology, 2022. V. 315. 108832. https://doi.org/10.1016/j.agrformet.2022.108832.

13. Brown J.N., Hochman Z., Holzworth D., Horan H. Seasonal climate forecasts provide more definitive and accurate crop yield predictions // Agric. For. Meteorol., 2018. V. 260-261. P. 247-254. https://doi.org/10.1016/j.agrformet.2018.06.001/

14. Cannon A.J. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables // Clim. Dynam., 2018. V. 50 (1-2). P. 31-49. https://doi.org/10.1007/s00382-017-3580-6/

15. Cantelaube P., Terres J.M. Seasonal weather forecasts for crop yield modelling in Europe // Tellus Series A: Dynamic Meteorology and Oceanography. 2005. V. 57 (3). P. 476-487. https://doi.org/10.1111/j.1600-0870.2005.00125.x

16. Tropical Cyclone IR-to-Rainfall Prediction Dataset [Elektronnyy resurs]. – Rezhim dostupa: URL: https://www.kaggle.com/datasets/kbdharun/tcirrp-dataset/data (data obrascheniya 04.03.2024)

17. Kuz'min V.I., Tytik D.L., Gadzaov A.F. Diskretnost' i nepreryvnost' v svoystvah fiziko-himicheskih sistem. M.: FIZMATLIT, 2014, s.191.

18. Kuz'min V.I. Modeli i algoritmy analiza nelineynyh kolebaniy s trendom: monografiya / V.I. Kuz'min, A.B. Samohin, V.V. Cherdyncev, A.F. Gadzaov. M.: MIREA, 2015. 94 s.

19. Baskakov A.G., Strukov V.E., Strukova I.I. Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity .. Sbornik: Mathematics. 2019. V. 210. I. 10. S. 1380-1427. https://doi.org/10.1070/SM9147.

20. Ghadge A., Wurtmann H., Seuring S. Managing climate change risks in global supply chains: a review and research agenda // Int. J. Prod. Res. 2020. V. 58 (1). P. 44-64, https://doi.org/10.1080/00207543.2019.1629670.

Login or Create
* Forgot password?