Moscow, Russian Federation
UDK 339.133.017 Изучение спроса. Изучение потребностей. Изучение потребления
Modern information technologies, such as big data, create new opportunities for improving business processes of chain retail enterprises. The aim of the study is to develop a business process management system for a chain retail enterprise based on big data analysis tools. The study identified the main trends in the development of retail trade in Russia and analyzed the experience of implementing big data in foreign chain retail enterprises. The differences between traditional methods of collecting and analyzing data in retail and methods involving the use of big data are revealed. Possible areas of using big data by chain retail enterprises are determined. The components of the business process management process for a chain retail enterprise based on big data analysis tools are considered. The stages are proposed and the features of implementing a business process management system based on big data are determined. The main problems that chain retail enterprises may face when implementing big data analysis tools are identified and ways to solve them are proposed.
retail, retail, data analysis. Big Data, Data Mining, IoT, personalized shopping experience, machine learning, artificial intelligence, supply chain management, segmentation, cybersecurity
1. Ashkinadze G.A. Neobhodimost' upravleniya kachestvom innovacionnogo processa [Tekst] / G.A. Ashkinadze, S.A. Filin // Problemy i perspektivy razvitiya promyshlennosti Rossii. Sbornik materialov III Mezhdunarodnoy nauchnoprakticheskoy konferencii / pod obsch. red. A.V. Bystrova. M.: Izdvo REU imeni G. V. Plehanova, 2018. — S. 60–67.
2. Vayl P. Cifrovaya transformaciya biznesa: izmenenie biznes modeli dlya organizacii novogo pokoleniya [Tekst] / P. Vayl, S. Vorner. — M.: Al'pina Pablisher, 2019. — 254 s.
3. Varzunov A.V. Analiz i upravlenie biznesprocessami [Tekst] / A.V. Varzunov, E.K. Torosyan, L.P. Sazhneva. M., 2016. — 114 s.
4. Velikorossov V.V. Suschnost' i napravleniya regulirovaniya biznesprocessov v roznichnoy torgovle [Tekst] / V.V. Velikorossov // Ekonomika i upravlenie: problemy, resheniya. — 2021. — T. 2. — № 6. — S. 65–72. DOI:https://doi.org/10.36871/ek.up.p.r.2021.06.02.011
5. GOST R ISO/MEK 205462021. Informacionnye tehnologii. Bol'shie dannye. Obzor i slovar' [Tekst]. — M.: Standartinform, 2021. — 12 s.
6. Mihnenko O.E. Cifrovaya transformaciya analiticheskih processov biznesa [Tekst] / O. E. Mihnenko // Uchet. Analiz. Audit. — 2021. — T. 8. — № 2. — S. 62–70. — DOI:https://doi.org/10.26794/240893032021826270
7. Nacional'noe reytingovoe agentstvo [Tekst]. 2024. — URL: https://www.ranational.ru (data obrascheniya: 01.08.2024).
8. O proizvodstve i ispol'zovanii valovogo vnutrennego produkta v 2023 godu [Tekst] // Federal'naya sluzhba gosudarstvennoy statistiki. 2024. — URL: https://rosstat. gov.ru/storage/mediabank/52_05042024.html (data obrascheniya: 01.08.2024).
9. Raschet cifrovogo dvoynika voronki prodazh [Tekst] / S.M. Sergeev, S.E. Barykin, N.V. Ostrovskaya, V.K. Yadykin // Strategicheskie resheniya i riskmenedzhment. 2020. — T. 11. — № 3. — S. 286–293. — DOI:https://doi.org/10.17747/2618947X20203286293.
10. Reyting omnikanal'nosti krupneyshih roznichnyh riteylerov glazami pokupatelya 2022–2023. Data Insight. 2023. — URL: https://www.omnirating.ru/#rec660824780 (data obrascheniya: 01.08.2024).
11. Reyting TOP100 krupneyshih rossiyskih internetmagazinov // Datainsight. 2024. — URL: https://top100. datainsight.ru (data obrascheniya: 01.08.2024).
12. Roznichnaya torgovlya [Tekst] // Federal'naya sluzhba gosudarstvennoy statistiki. 2024. — URL: https://rosstat.gov.ru/ statistics/roznichnayatorgovlya (data obrascheniya: 01.08.2024).
13. Filin S.A. Osobennosti ekonomicheskih otnosheniy predpriyatiy optovoy torgovli s drugimi sub'ektami rynka [Tekst] / S.A. Filin, O.I. Obuhov // Nacional'nye interesy: prioritety i bezopasnost'. — 2017. — T. 13. № 10. — S. 1838–1855.
14. Efimova D. Retail and Big Data: Transforming the Industry to Become a Leader. URL: https://startups.epam.com/blog/ bigdataanalyticsinretail (data obrascheniya: 01.08.2024).