Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
from 01.01.2015 until now
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
The article solves the problem of increasing the efficiency of timber truck trains of different configuration under unsteady driving modes in the process of timber transportation in the conditions of insufficiently equipped forest roads. The experience of operation of forest road transport shows that the most part of fuel energy is spent by it on heat losses arising in its units and systems. The necessity to reduce energy losses in suspensions of trailing links of forest road trains by means of transformation of this energy, accumulation and subsequent useful use is substantiated. In order to increase the efficiency of forest road trains the perspective designs of trailing links equipped with recuperative hydraulic shock absorbers are offered. To assess the performance of the proposed trailing links as part of timber truck trains, mathematical models have been developed that take into account the resonance phenomena occurring during the movement on the supporting surface of the studied timber truck trains. The research was carried out with the help of the developed computer programs. Equipping the suspensions of trailing links with regenerative hydraulic shock absorbers allows reducing the amplitude of resonance vibrations for a forestry tractor-trailer truck from 87 cm to 26 cm, for a forestry tractor-trailer truck from 27 cm to 20 cm and for a forestry truck-trailer combination from 46 cm to 33 cm. The recuperated power generated by the trailer link suspension was 7.8 kW for a truck-trailer combination, 9.1 kW for a forestry tractor-trailer combination, and 22.4 kW for a forestry tractor-trailer combination. The optimum value of the damping coefficient of an individual regenerative hydraulic shock absorber was 30 kN · s/m.
simulation modeling, timber hauling vehicle, trailer link, regenerative shock absorber, efficiency, timber road, suspension, resonant vibrations, vertical vibration amplitude, recovered power, timber
1. Mohirev, A. P. Zakonomernosti rangovyh raspredeleniy faktorov vyvozki drevesiny s lesnyh uchastkov / A. P. Mohirev, K. P. Rukomoynikov, P. M. Mazurkin // Lesnoy vestnik / Forestry Bulletin, – 2021. – T. 25. № 4. S. 112-120. – Bibliogr. : s. 117-118 (20 nazv.). – DOI: https://doi.org/10.18698/2542-1468-2021-4-112-120
2. Verifikaciya eksperimentami modeley skorosti dvizheniya lesovozov v zavisimosti ot prirodno-proizvodstvennyh faktorov / A. P. Mohirev, K. P. Rukomoynikov, P. M. Mazurkin, N. A. Bragina // Lesnoy vestnik. Forestry Bulletin. – 2021. – T. 25, № 2. – S. 108-115. – Bibliogr. :s. 113 (21 nazv.). – DOI: https://doi.org/10.18698/2542-1468-2021-2-108-115
3. Mazurkin, P. M. Reytingi grupp faktorov vyvozki sortimentov / P. M. Mazurkin, A. P. Mohirev, K. P. Rukomoynikov // Resources and Technology. – 2021. – T. 18, № 3. – S. 37-52. – Bibliogr. :s. 50-51 (12 nazv.). – DOI: https://doi.org/10.15393/j2.art.2021.5803
4. Posmet'ev, V. I. Obosnovanie celesoobraznosti osnascheniya lesovoznyh avtopoezdov rekuperativnymi tyagovo-scepnymi ustroystvami po rezul'tatam imitacionnogo modelirovaniya : monografiya / V. I. Posmet'ev, V. O. Nikonov, V. V. Posmet'ev. – Voronezh, 2023. – 204 s. – Bibliogr. : s. 185-203 (141 nazv.). Rezhim dostupa : https://www.elibrary.ru/item.asp?id=61082376
5. Optimizaciya konstruktivnyh parametrov rekuperativnogo scepnogo ustroystva, ustanovlennogo v lesovoznom avtomobile s pricepom / V. O. Nikonov, V. I. Posmet'ev, V. A. Zelikov, V. V. Posmet'ev, A. S. Chuykov // Lesotehnicheskiy zhurnal. – 2023. – T. 13, № 1(49). – S. 162-179. – Bibliogr. : s. 176-177 (20 nazv.). – DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/11
6. Imitacionnoe modelirovanie raboty rekuperativnogo pnevmogidravlicheskogo dyshla scepnogo ustroystva avtopoezda s funkciey samovytaskivaniya / V. O. Nikonov, V. I. Posmet'ev, I. V. Siz'min, V. V. Posmet'ev, N. V. Mozgovoy, P. V. Kolodiy // Lesotehnicheskiy zhurnal. – 2023. – T. 13, № 4.1(52). – S. 92-113. – Bibliogr. : s. 110-112 (20 nazv.). – DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/6
7. Komp'yuternoe modelirovanie raboty rekuperativnogo povorotnogo konikovogo ustroystva lesovoznogo tyagacha s pricepom-rospuskom / V. I. Posmet'ev, V. O. Nikonov, A. Yu. Manukovskiy, V. V. Posmet'ev // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. – 2022. – № 5(389). – S. 85-99. – Bibliogr. : s. 98-99 (20 nazv.). – DOI: https://doi.org/10.37482/0536-1036-2022-5-85-99
8. Imitacionnoe modelirovanie rekuperativnogo pruzhinno-gidravlicheskogo sedel'no-scepnogo ustroystva lesovoznogo tyagacha s polupricepom / V. I. Posmet'ev, V. O. Nikonov, V. V. Posmet'ev, A. V. Avdyuhin // Lesotehnicheskiy zhurnal. – 2020. – T. 10, № 4(40). – S. 227-242. – Bibliogr. : s. 239-241 (20 nazv.). – DOI: https://doi.org/10.34220/issn.2222-7962/2020.4/19
9. Attitude Control of Vehicle Based on Series Active Suspensions / Jia W., Zhang W., Ma F., Wu L. // Actuators 2023, 12, 67. – Bibliogr. : pp. 19-20 (36 titles). – DOI: https://doi.org/10.3390/act12020067 (SNIP 0,975)
10. Dynamic Performance of a Magnetic Energy-Harvesting Suspension: Analysis and Experimental Verification / Zhou R., Song Y., Jin J., Xu F., Sun F., Yang L., Yan M. // Actuators 2023, 12, 308. – Bibliogr. : pp. 13-14 (41 titles).– DOI: https://doi.org/10.3390/act12080308 (SNIP 0,975)
11. Vibration Control of Car Body and Wheel Motions for In-Wheel Motor Vehicles Using Road Type Classification / Kim Y.-J., Sohn Y., Chang S., Choi S.-B., Oh J.-S. // Actuators 2024, 13, 80. – Bibliogr. : pp. 15-16 (39 titles). – DOI: https://doi.org/10.3390/act13020080 (SNIP 0,975)
12. Nonlinear Modeling and Coordinate Optimization of a Semi-Active Energy Regenerative Suspension with an Electro-Hydraulic Actuator / Kou F., Du J., Wang Z., Li D., Xu J. // Algorithms 2018, 11, 12. – Bibliogr. : pp. 16-17 (24 titles). – DOI: https://doi.org/10.3390/a11020012 (SNIP 0,975)
13. Krauze P. Driving Safety Improved with Control of Magnetorheological Dampers in Vehicle Suspension / P. Krauze, J. Kasprzyk // Appl. Sci. 2020, 10, 8892. – Bibliogr. : pp. 27-29 (52 titles). – DOI: https://doi.org/10.3390/app10248892 (SNIP 0,573)
14. Investigation of Vehicle Stability with Consideration of Suspension Performance / Lukosevicius V., Makaras R., Rutka A., Kersys R., Darguzis A., Skvireckas R. // Appl. Sci. 2021, 11, 9778. – Bibliogr. : pp. 29-31 (50 titles). – DOI: https://doi.org/10.3390/app11209778 (SNIP 0,573)
15. Han S.-Y. Vibration Control for a Vehicle Semi-Active Suspension System via the PPO Approach / Han S.-Y., Liang T. // Appl. Sci. 2022, 12, 3078. – Bibliogr. : pp. 16-17 (32 titles). – DOI: https://doi.org/10.3390/app12063078 (SNIP 0,573)
16. Hydraulic Integrated Interconnected Regenerative Suspension: Sensitivity Analysis and Parameter Optimization / Guo S., Chen L., Pan Y., Wang X., Tan G. // Electronics 2023, 12, 891. – Bibliogr. : pp. 21-22 (34 titles). – DOI: https://doi.org/10.3390/electronics12040891 (SNIP 1,045)
17. Research Review of a Vehicle Energy-Regenerative Suspension System / Lv X., Ji Y., Zhao H., Zhang J., Zhang G., Zhang L. // Energies 2020, 13, 441. – Bibliogr. : pp. 11-14 (68 titles). – DOI: https://doi.org/10.3390/en13020441 (SNIP 1,025)
18. Gijón-Rivera C. Methodology for Comprehensive Comparison of Energy Harvesting Shock Absorber Systems / Gijon-Rivera C., Olazagoitia J. L. // Energies 2020, 13, 6110. – Bibliogr. : pp. 23-25 (29 titles). – DOI: https://doi.org/10.3390/en13226110 (SNIP 1,025)
19. Hydraulic Integrated Interconnected Regenerative Suspension: Modeling and Characteristics Analysis / Guo S., Chen L., Wan X., Zou J., Hu S. // Micromachines 2021, 12, 733. – Bibliogr. : pp. 20-22 (44 titles). – DOI: https://doi.org/10.3390/mi12070733 (SNIP 0,95)
20. Guntur H. L. Designing hydro-magnetoelectric regenerative shock absorber for vehicle suspension considering conventional-viscous shock absorber performance / Guntur H. L., Hendrowati W., Syuhri S. N. H. // Journal of Mechanical Science and Technology 34 (1) (2020) 55-67. – Bibliogr. : pp. 66-67 (30 titles). – DOI: http://doi.org/10.1007/s12206-019-1205-1 (SNIP 0,843)
21. Krauze P. Identification of Control-Related Signal Path for Semi-Active Vehicle Suspension with Magnetorheological Dampers / P. Krauze // Sensors 2023, 23, 5770. – Bibliogr. : pp. 26-27 (50 titles). – DOI: https://doi.org/10.3390/s23125770 (SNIP 1,317)
22. Huang J. Analysis and Research on the Comprehensive Performance of Vehicle Magnetorheological Regenerative Suspension / Huang J., Wang E., Zhang H. // Vehicles 2020, 2, 576-588. – Bibliogr. : pp. 587-588 (14 titles). – DOI: https://doi.org/10.3390/vehicles2040033 (SNIP 0,955)
23. Yaghoubi S. Modeling and optimization of car suspension system in the presence of magnetorheological damper using Simulink-PSO hybrid technique / Yaghoubi S., Ghanbarzadeh A. // Results in Engineering 22 (2024) 102065. – Bibliogr. : pp. 6-7 (34 titles). – DOI: https://doi.org/10.1016/j.rineng.2024.102065 (SNIP 1,613)