Voronezh, Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
In accordance with the National Goal "Environmental Well-being", 17 directions have been formulated and justified in which research is being conducted and is planned to be conducted at ex situ birch F1 and F2 fa-cilities. The variability of height growth of seed progeny and self-pollination on productivity (height growth) and survival in the early stages of ontogenesis in introduced birch species, Manchurian birch (Betula mandshurica (Regel) Nakai) – diploid, 2n=2x=28, poplar-leaved birch (Betula populifolia Marshall) – diploid, 2n=2x=28 and elm–leaved birch (Betula ulmifolia Cham.) - hexaploid, 2n=6x=84 were studied. The interest in these species is caused by the fact that they are diverse, the elm-leaved birch has 6 haploid chromosome sets. Since the survival rate of seedlings is one of the main characteristics in the creation of forest crops, an analysis of the preservation of elm-leaved birch (Betula ulmifolia Cham.) trees was carried out, 50% with self-pollination and 81.25% with open pollination. A brief history of the terminology of these species, the variability of their productivity signs are given on the example of growth at two, three, four, five and six years of age, as well as the preservation of some of them. The phenomenon of "reverse" inbreeding depression has been revealed for a polyploid introduced spe-cies of B. ulmifolia. The revealed variability in the leading type of growth of the reproduction system in these introduced birch species shows the prospects of breeding work with polyploid species – B. ulmifolia.
introduction, ontogenesis, growth in height, self-pollination, open-pollination, B. manchurian (Betula mandshuri-ca (Regel) Nakai), B. poplar-leaved (Betula populifolia Marshall), B. elm-leaved (Betula ulmifolia Cham.)
1. Grattapaglia D., Silva-Junior O. B., Resende R. T., Cappa E. P., Müller B. S. F., Tan B., Isik F., Ratcliffe B., El-Kassaby Y. A. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. Front. Plant Sci. 2018; 9:1693. http://doi.org/10.3389/fpls.2018.01693.
2. Possen B. J. H. M., Rousi M., Keski‐Saari S., Silfver T., Kontunen‐Soppela S., Oksanen E., Mikola J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming 2021. Ecosphere, 12(5). http://doihttps://doi.org/10.1002/ecs2.3520.
3. Sapel'nikova I. I. Ocenka mnogoletnih fenologicheskih dannyh nekotoryh drevesno-kustarnikovyh vidov v Voronezhskom zapovednike // Trudy Voronezhskogo gosudarstvennogo zapovednika. Vyp. XXXI ; FGBU «Voronezhskiy gosudarstvennyy zapovednik». Voronezh : OOO «Cifrovaya poligrafiya», 2023. S. 174–228. http://doihttps://doi.org/10.57007/9785907669321_2023_31_174.
4. Belton S., Cubry P., Fox E., Kelleher C. T. Novel Post-Glacial Haplotype Evolution in Birch – A Case for Conserving Local Adaptation. Forests. 2021;12, 1246. https://doi.org/10.3390/f120912.
5. Anamthawat-Jónsson K. Hybrid introgression: the outcomes of gene flow in birch. Science Asia. 2019; 45: 203–211. http://doihttps://doi.org/10.2306/scienceasia1513-1874.
6. Isakov I. Yu., Tabackaya T. M., Vnukova N. I., Mashkina O. S., Mihin V. I., Govedar Z. Fenotipicheskaya i genetiko-selekcionnaya ocenka berezy povisloy (Betula pendula Roth) i berezy pushistoy (Betula pubescens Ehrh.) ex situ i in vitro // Lesotehnicheskiy zhurnal. 2023. T. 13. № 2 (50). S. 25–42. https://doi.org/10.34220/issn.2222-7962/2023.2/2.
7. Sharma U., Sankhyan H. P., Kumari A. et al. Genomic selection: a revolutionary approach for forest tree improvement in the wake of climate change. Euphytica 220, 9 2024. https://doi.org/10.1007/s10681-023-03263-5.
8. Anamthawat-Jónsson K., Karlsdóttir L., Thórsson Æ.T., Jóhannsson M. H. Naturally occurring triploid birch hybrids from woodlands in Iceland are partially fertile. New Forests. 2021; 52: 659–678. https://doi.org/10.1007/s11056-020-09816-z.
9. Holmström E., Karlsson M., Nilsson U. (2017) Modeling birch seed supply and seedling establishment during forest regeneration. Ecol Model 352: 31–39. https://doi.org/10.1016/j.ecolmodel.2017.02.027.
10. Vetchinnikova L. V., Titov A. F. Introdukciya karel'skoy berezy: istoriya, opyt i ocenka perspektiv // Hortus Botanicus : mezhdunarodnyy elektronnyy zhurnal botanicheskih sadov. 2023; 18: 310–331. URL: http://elibrary.petrsu.ru/books/68267.
11. Milennaya L. A., Isakov I. Yu. Ispytanie potomstv chetyreh vidov berez v Orlovskoy oblasti // Opytnaya baza v lesnoy selekcii : sb. nauch. tr. Voronezh : NIILGiS, «Kvadrat», 1995. S. 89–93. URL: https://www.elibrary.ru/item.asp?id=25370733.
12. Wang N., Mcallister H. A., Bartlett P. R., Buggs R. J. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). 2016 Ann. Bot. 117, 1023–1035. http://doihttps://doi.org/10.1093/aob/mcw048.
13. Touchette L., Godbout J., Lamothe M., Porth I. M., Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evolutionary Applications, 2024. 17. http://doi/10.1111/eva.13689.
14. Taksacionnyy spravochnik po lesnym resursam Rossii (za isklyucheniem drevesiny) / L. E. Kurlovich, V. N. Kosicyn. Pushkino : VNIILM, 2018. 282 s. URL: https://www.elibrary.ru/item.asp?id=38169205.
15. Usol'cev V. A., Cepordey I. S., Chasovskih V. P. Vseobschie allometricheskie modeli fitomassy berez (rod Betula L.): meta-analiz // Trudy Sankt-Peterburgskogo NII lesnogo hozyaystva. 2023; 4: 4–15. http://doihttps://doi.org/10.21178/2079-6080.2023.4.4
16. Medvedeva S. O., Cherepanova O. E., Filippov E. G., Koporikov A. R. Ispol'zovanie ITS markerov dlya opredeleniya vidovoy prinadlezhnosti berez sekcii Apterocaryon / Problemy botaniki Yuzhnoy Sibiri i Mongolii, 2023. T. 22, № 2. S. 187–190. URL: https://www.elibrary.ru/item.asp?id=55079904.
17. Zhan Y., Su T., Han M., Sun D. A multiplex polymerase chain reaction method for rapid detection of foreign genes in transgenic birch (Betula platyphylla). Sun Bulletin of botanical research, 26 (4) 2006, p. 480–485. http://doihttps://doi.org/10.7525/j.issn.1673-5102.2006.04.003
18. Zeng F. S., Zhan Y. G., Zhao H. C. et al. Molecular characterization of T-DNA integration sites in transgenic birch. Trees 24, 2010, r. 753–762. https://doi.org/10.1007/s00468-010-0445-6.
19. Li Y., Yuan Y., Hu Z., Liu S., Zhang X. Genetic Transformation of Forest Trees and Its Research Advances in Stress Tolerance. Forests 2024, 15, 441. https://doi.org/10.3390/f15030441.
20. Chu X., Wang M., Fan Z., Li J., Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int. J. Mol. Sci. 2024, 25, 1666. https://doi.org/10.3390/ijms25031666.
21. Isakov I. Yu., Sivolapov A. I. Lesnaya genetika i selekciya : uchebnoe posobie / pod red. A. I. Sivolapova. Voronezh, 2020. 225 s. URL: https://www.elibrary.ru/item.asp?id=43973151.
22. Medvedeva S. O., Cherepanova O. E. Taksonomicheskie voprosy roda Betula // Cibirskiy lesnoy zhurnal. 2023. № 2. S. 65–75. URL: https://www.elibrary.ru/item.asp?edn=lmswtw&ysclid=lwjmsavji2191651463.
23. Ivetić V. et al. The role of forest reproductive material quality in forest restoration // Forestry Engineering Journal. 2019: 9 (2): 56-65. DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.
24. Zhou L., Dai L., Wang S. et al. Changes in carbon density for three old-growth forests on Changbai Mountain, Northeast China: 1981–2010. Annals of Forest Science 2011; 68, 953–958. https://doi.org/10.1007/s13595-011-0101-3.
25. Popov V. K. Berezovye lesa Central'noy lesostepi Rossii. Voronezh : Izd-vo Voronezh. gos. lesotehn. akademii, 2003. 424 s. URL: https://elibrary.ru/item.asp?id=19505353.
26. Araya H., Otaka J., Nishihara E., Fujii Y. First isolation and identification of salicylate from Betula grossa var. ulmifolia - a potent root growth inhibitor. Allelopathy J. 2012; 30: 153–158.
27. Wang N., McAllister H. A., Bartlett P. R., Buggs R. J. A. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). 2016; Annals of Botany, 117(6), 1023–1035. https://doi.org/10.1093/AOB/MCW048.
28. Dahle G. A., Gallagher F. J., Gershensond D., Schäfer K. V. R., Grabosky J. C. Allometric and mass relationships of Betula populifolia in a naturally assembled urban brownfield: implications for carbon modeling. Urban Ecosyst. 2014; 17: 1147–1160. http://dohttps://doi.org/10.1007/s11252-014-0377-9.
29. Usenko N. V. Derev'ya, kustarniki i liany Dal'nego Vostoka : spravochnaya kniga / pod obsch. red. S. D. Shlotgauer. 3-e izd., pererab. i dop. Habarovsk : Priamurskie vedomosti, 2009. 271 s.
30. Safronycheva E. D., Lytkin K. F., Karzhaev D. S., Volkov V. A. Sozdanie DNK-bibliotek dlya vysokoproizvoditel'nogo genotipirovaniya berezy karel'skoy i analiz ih kachestva. Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2023; (246): 206-220. https://doi.org/10.21266/2079-4304.2023.246.206-220.
31. Vedernikov D. N., Ryseva E. A. Sintez slozhnyh efirov seskviterpenovyh spirtov pochek berezy i kumarovoy kisloty. Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2022; 238: 160-169. https://doi.org/10.21266/2079-4304.2022.238.160-169.
32. Isakov, I. Yu. Vliyanie sposoba opyleniya na selekcionnye osobennosti semennogo potomstva Betula pendula Roth. i B. pubescens Ehrh : dis. ... kand. s.-h. nauk : 06.03.01 / Isakov Igor' Yur'evich. – Voronezh, 2001. – 218 s. URL: https://www.elibrary.ru/item.asp?id=19166593.