SIMULATION OF ATTENUATION OF IONIZING RADIATION DUE TO PROTECTIVE CASING OF CIRCUITS
Abstract and keywords
Abstract (English):
The article examines the influence of the electromagnetic field generated as a result of a nuclear explosion and the degree of negative impact on the CMOS semiconductor. The possibility of providing protection of semiconductor devices from radiation using a protective housing is assessed. A review of the various materials that are used to construct protective screens is carried out, the level of protection of various substances from different types of radiation, their positive and negative sides, in particular their weight, their joint use, and the inability to protect against the entire spectrum of radiation. A mathematical model for designing a protective screen containing four layers and limited in both weight and thickness is being built. As a computer experiment, a program in the C# programming language was developed based on a mathematical model, which provided the calculation of the optimal parameters of the protective case, which will ensure effective protection of the device. Modeling the protective enclosure allows you to preliminarily assess the effectiveness of the protection and take measures to strengthen it, if necessary. This reduces the risk of damage to the device and ensures its reliable operation even under conditions of increased radiation exposure.

Keywords:
Mathematical model, modeling, computer simulation, model, C#, microcircuit, electromagnetic fields,CMOS semiconductors, radiation, shielding, shielding efficiency.
References

1. Sistemnye voprosy zaschity programm i dannyh. Zaschita programmnogo obespecheniya pol'zovateley individual'nyh vychislitel'nyh sredstv i setey / S.V. Kostarev, V.V. Karganov, V.A. Lipatnikov, V.O. Drachev // Tehnologii zaschity informacii v usloviyah kiberneticheskogo protivoborstva. – SPb., 2020. – S. 323-435.

2. Razrabotka algoritmov i programm analiza elektricheskih harakteristik BIS / A.S. Yagodkin [i dr.] // Modelirovanie sistem i processov. – 2022. – T. 15, № 3. – S. 136-148.

3. Rezul'taty issledovaniy vypryamitel'nyh diodov na stoykost' / A.I. Yan'kov [i dr.] // Modelirovanie sistem i processov. – 2019. – T. 12, № 3. – S. 83-89.

4. Mihaylov, V.A. Obespechenie stoykosti bortovyh cifrovyh vychislitel'nyh mashin k vozdeystviyu sverhkorotkih elektromagnitnyh impul'sov : special'nost' 05.12.04 - Radiotehnika, v tom chisle sistemy i ustroystva televideniya : avtoref. dis. … kand. tehn. nauk / Mihaylov Viktor Alekseevich. – Moskva, 2009. – 24 s.

5. Marfin, V.A. Issledovanie radiacionnoy stoykosti IS COS mikroprocessora TMS320F2812 pri vozdeystvii stacionarnogo ioniziruyuschego izlucheniya / V.A. Marfin // Molodezh' i nauka: tezisy dokladov XVI Mezhdunarodnoy telekommunikacionnoy konferencii molodyh uchenyh i studentov, Moskva, 01 oktyabrya – 2012 goda. – Moskva: Nacional'nyy issledovatel'skiy yadernyy universitet "MIFI", 2013. – Ch. 1. – S. 87-89.

6. Gibkie konstrukcii zaschitnyh ekranov elektromagnitnogo izlucheniya na osnove uglerodsoderzhaschih poroshkovyh napolniteley / T.A. Pulko, H.A.E. Ayad, A.M. Mohamed, L.M. Lyn'kov // Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki. – 2016. – № 7(101). – S. 132-135.

7. Sozdanie bazisa dlya mikroshem sbora i obrabotki dannyh / V.A. Sklyar, A.V. Achkasov, K.V. Zol'nikov [i dr.] // Modelirovanie sistem i processov. – 2018. – T. 11, № 2. – S.66-71.

8. Antimirov, V.M. Obespechenie rabotosposobnosti apparatury pri primenenii radiacionnyh i elektromagnitnyh izlucheniy / V.M. Antimirov, V.N. Achkasov, V.P. Kryukov // Modelirovanie sistem i processov. – 2008. – № 3-4. – S. 23-28.

9. Jia, C. Progress in preparation of High temperature Copper oxide superconductors / C. Jia, J.D. Zhang, Q. Jin // Journal of Intraocular Lens. – 2014. – Vol. 43(8). – Pp. 2113-2117.

10. Analiz problem modelirovaniya elementov KMOP BIS / V.K. Zol'nikov [i dr.] // Modelirovanie sistem i processov. – 2018. – T. 11, № 4. – S. 20-25.

11. Superconducting transmission lines - Sustainable electric energy transfer with higher public acceptance / H. Thomas [et al.] // Renewable and Sustainable Energy Reviews. – 2016. – № 3. – Pp. 59-72.

12. Naundorf, U. Analogovaya elektronika. Osnovy, raschet, modelirovanie / U. Naundorf. – M.: Tehnosfera, 2008. – 472 s.

13. Karpov, A.I. Results of research in the area of nanotechnologies and nanomaterials. Part 1 / A.I. Karpov // Nanotechnologies in Construction: A Scientific Internet-Journal. – 2014. – Vol. 6, No. 1. – Pp. 101-112.

14. Modelirovanie ostatochnyh radiacionnyh effektov v BIS na funkcional'no-logicheskom urovne / E.R. Astvacatur'yan, V.M. Barbashov, V.A. Belyaev, A.L. Gurariy // Problemy sozdaniya poluprovodnikovyh priborov, IS i REA na ih osnove, stoykih k VVF : sbornik dokladov. – M.: ADS "Radteh", 1991. – C. 30-31.

15. Kariev, Ch.A. Razrabotka Windows-prilozheniy na osnove Visual C# / Ch.A. Kariev. - M.: Internet-universitet informacionnyh tehnologiy, Binom. Laboratoriya znaniy, 2020. - 768 c.

16. Ushenina, I.V. Sovremennye napravleniya razvitiya PLIS arhitektury FPGA / I.V. Ushenina // XXI vek: itogi proshlogo i problemy nastoyaschego plyus. – 2017. – №. 4. – S. 120-124.

Login or Create
* Forgot password?