Voronezh, Voronezh, Russian Federation
Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. Gagarin Air Force Academy
Russian Federation
UDK 620.17 Испытания механических свойств материалов. Механические испытания
The article is devoted to solving the problem aimed at improving the operational characteristics of the bridge bed of a railway bridge through the use of dispersed reinforcement. It is noted that structural elements made of fibroconcrete behave similarly to reinforced concrete with increasing load: long before destruction, they experience a continuity violation. The question of the distribution of forces between the individual fibers that stop the crack, the change in these conditions during the destruction, the magnitude and directions of these efforts at the moment preceding the destruction is considered. A centrally stretched structural element chaotically reinforced with fibers with a violation of continuity in the form of a through crack perpendicular to the tensile stresses is investigated. The proposed dependencies allow us to estimate the distribution of forces between individual fibers crossing the crack and the deformations of the element associated with the opening of the latter, which is important for creating a unified methodology for calculating strength and determining deformations of fiber-reinforced concrete structures. The expediency of using dispersed (fiber) reinforcement in a ballast-free reinforced concrete slab is considered. The task statement and description of fiber reinforcement are completed. The subject area is proposed to be justified experimentally by studying fiber reinforced concrete for impact load and structures with dispersed reinforcement for alternating inertial load. The conducted experimental studies have shown the possibility of using dispersed (fiber) reinforcement in a ballast-free reinforced concrete slab.
Modeling, distribution of forces between individual fibers, dispersed reinforcement of structures, reinforced concrete, fiber concrete, bridge bed of a railway bridge, dynamic loads.
1. Romanov, V.P. K vyboru raschetnoy shemy raboty fibr v hode razrusheniya fibrobetonnyh elementov pri rastyazhenii / V.P. Romanov // Mehanika sterzhnevyh sistem i sploshnyh sred : mezhvuzovskiy tematicheskiy sbornik trudov.– LISI, 1980. – Vyp. 13. – S. 115-124.
2. Gvozdev, A.A. Raschet nesuschey sposobnosti konstrukciy po metodu predel'nogo ravnovesiya / A.A. Gvozdev. – M.: Stroyizdat, 1949. – 280 s.
3. Romanov, V.P. Prochnost' elementov konstrukciy iz stalefibrobetona / V.P. Romanov, V.P. Vylezhagin. – L.: LDNTP, 1978. – 27 s.
4. Bitson, G.B. Stale-of-the report of fiber reinforced concrete / G.B. Bitson // ACJ journal. – 1973. – Vol. 70, № 11. – P. 544.1R-1.
5. Laws, V. Reinforced of brittle matrices by glass fiber / V. Laws, P. Lawrence, R.V. Nurse // Journal of Physics D: Applied Physics. – 1973. – Vol. 6, № 5. – C. 523. – DOI:https://doi.org/10.1088/0022-3727/6/5/309.
6. Holmyanskiy, M.M. Zakladnye detali zhelezobetonnyh konstrukciy / M.M. Holmyanskiy. – M.: Stroyizdat, 1968. – 208 c.
7. Mindlin, R.D. Force at a point in the interior of a semi – infinite solid / R.D. Mindlin // Physics. – 1936. – Vol.7. – Pp. 195-202. – DOI:https://doi.org/10.1063/1.1745385.
8. Sovremennye kompozicionnye materialy / pod red. L. Brautmana, R. Kroka. – M.: Mir, 1970. – 672 c.
9. Stavrov, G.N. Eksperimental'noe issledovanie raboty fibrobetonnyh i fibrozhelezobetonnyh konstrukciy pri znakoperemennom malociklovom nagruzhenii / G.N. Stavrov, S.D. Nikolenko // Nauchno-tehnicheskiy zhurnal. Izvestiya VUZov: Stroitel'stvo i arhitektura. – 1986. – №1. – S. 18-22.
10. The effect of particulate reinforcement on strength and deformation characteristics of fine-grained concrete / S.V. Klyuev, A.V. Klyuev [et al.] // Magazine of Civil Engineering. – 2017. – № 7. – Pp. 66-75. – DOI:https://doi.org/10.18720/MCE.75.6.
11. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression / B. Li, L. Xu, Y. Chi [et al.] // Construction and Building Materials. – 2017. – Vol. 140. – Pr. 109-118. – DOI:https://doi.org/10.1016/j.conbuildmat. 2017.02.094.
12. Travush, V.I. Strength of reinforced concrete beams of high-performance concrete and fiber reinforced concrete / V.I. Travush, D.V. Konin, A.S. Krylov // Magazine of Civil Engineering. – 2018. – № 1. – Pp. 90-100. – DOI:https://doi.org/10.18720/MCE.77.8.
13. Biolzi, L. Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions / L. Biolzi, S. Cattaneo // Cement and Concrete Composites. – 2016. – Vol. 77. – Pp. 1-13. – DOI:https://doi.org/10.1016/j.cemconcomp.2016.12.002.
14. Ranjbaran, F. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading / F. Ranjbaran, O. Rezayfar, R. Mirzababai // International Journal of Advanced Structural Engineering. – 2018. – Vol. 10. – Pp. 49-60. – DOI:https://doi.org/10.1007/s40091-018-0177-1.
15. Shukla, M. Behaviour of Reinforced Concrete Beams with Steel Fibres under Flexural Loading / M. Shukla // International Journal of Earth Sciences and Engineering. – 2011. – Vol. 04, № 06 SPL. – Pp. 843-846.
16. Behaviour of reinforced fibrous concrete beams under reversed cyclic loading / R. Hameed, F. Duprat, A. Turatsinze [et al.] // Engineering & Applied Sciences. – 2011. – Vol. 9, № 6. – Pp. 1-12.
17. Karrar, A.A. Experimental investigation of fiber reinforced concrete beams / A.A. Karrar // A thesis submitted in partial fulfillment of the requirements for degree of Master of Science. - Portland State University, 2015. - 106 p.
18. Behaviour of concrete with a disperse reinforcement under dynamic loads / S.D. Nikolenko, E.A. Sushko, S.A. Sazonova [et al.] // Magazine of Civil Engineering. – 2017. – No. 7. – Pp. 3-14. – DOI:https://doi.org/10.18720/MCE.75.1.
19. Tkachenko, A.N. Theoretical estimation of fiber distribution in fiber reinforced concretes / A.N. Tkachenko, S.D. Nikolenko, D.V. Fedulov // Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture. – 2011. – Vol. 3 (11). – Pp. 36-41.
20. The influence of fibre orientation on the post-cracking tensile behaviour of steel fibre reinforced self-compacting concrete / A. Abrishambaf, V.M.C.F. Cunha, J.A.O. Barros // Frattura ed Integrità Strutturale. – 2015. – Vol. 31. – Pp. 38-53. – DOI:https://doi.org/10.3221/IGF-ESIS.31.04
21. Nikolenko, S.D. Matematicheskoe modelirovanie dispersnogo armirovaniya betona / S.D. Nikolenko, S.A. Sazonova, V.F. Asminin // Modelirovanie sistem i processov. – 2019. – T. 12, № 1. – S. 74-79.
22. Behavior of dispersion-reinforced concrete under dynamic action / S.D. Nikolenko, S.A. Sazonova, V.F. Asminin [et al.] // Journal of Physics: Conference Series. ICMSIT-III 2022: Metrological Support of Innovative Technologies, 2022. – P. 022006. – DOI:https://doi.org/10.1088/1742-6596/2373/2/022006.
23. How can the engineering parameters of the NIR grader affect the efficiency of seed grading? / T.P. Novikova [et al.] // Agriculture. – 2022. – T. 12, № 12. – S. 2125. – DOI:https://doi.org/10.3390/agriculture12122125.
24. Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Conference Series. - 2021. - T. 2032. - C. 012117. - DOI:https://doi.org/10.1088/1742-6596/2032/1/012117.
25. Zolnikov, V. Verification methods for complex-functional blocks in CAD for chips deep submicron design standards / V. Zolnikov, K. Zolnikov, N. Ilina, K. Grabovy // E3S Web of Conferences. – 2023. – V. 376. - P. 01090.
26. Environmental impact consideration in the measures to improve the builders of different specialties working conditions / S.A. Sazonova, V.K. Zolnikov, K.V. Zolnikov [et al.] // E3S Web of Conferences. – 2023. – T. 389. – P. 02007. – DOI:https://doi.org/10.1051/e3sconf/202338902007.
27. Strength test of the industrial building's load-bearing structures / S.A. Sazonova, S.D. Nikolenko, T.V. Zyazina [et al.] // Journal of Physics: Conference Series. ICMSIT-III 2022: Metrological Support of Innovative Technologies, 2022. – P. 022016. – DOI:https://doi.org/10.1088/1742-6596/2373/2/022016.
28. Novikov, A.I. Grading of scots pine seeds by the seed coat color: how to optimize the engineering parameters of the mobile optoelectronic device / A.I. Novikov, V.K. Zolnikov, T.P. Novikova // Inventions. – 2021. – V. 6, № 1. – P. 7. – DOI:https://doi.org/10.3390/inventions6010007.
29. Methods of assessing the effectiveness of reforestation based on the theory of fuzzy sets / A. Kuzminov, L. Sakharova, M. Stryukov, V.K. Zolnikov // IOP Conference Series: Earth and Environmental Science. "International Forestry Forum "Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions". – 2020. – P. 012007. – DOI:https://doi.org/10.1088/1755-1315/595/1/012007.
30. Sakharova, L. Methodology for assessing the sustainability of agricultural production, taking into account its economic efficiency / L. Sakharova, M. Stryukov, V.K. Zolnikov // IOP Conference Series: Earth and Environmental Science. International scientific and practical conference "Forest ecosystems as global resource of the biosphere: calls, threats, solutions" (Forestry-2019). – 2019. – P. 012019. – DOI:https://doi.org/10.1088/1755-1315/392/1/012019.
31. Formation of the predicted training parameters in the form of a discrete information stream / T.E. Smolentseva, V.I. Sumin, V.K. Zolnikov, V.V. Lavlinsky // Journal of Physics: Conference Series. – 2018. – P. 012045. - DOI:https://doi.org/10.1088/1742-6596/973/1/012045.
32. Condition monitoring of multi-apartment buildings / S. Sazonova, S. Nikolenko, E. Chernikov [et al.] // AIP Conference Proceedings. – 2022. – V. 2647. – P. 030018. – DOI:https://doi.org/10.1063/5.0104699.
33. Inspection of project documentation during the construction of an apartment building / S. Sazonova, S. Nikolenko, A. Meshcheryakova [et al.] // AIP Conference Proceedings. – 2022. – V. 2647. – P. 030019. – DOI:https://doi.org/10.1063/5.0104700.