from 01.01.2004 to 01.01.2024
Samara, Samara, Russian Federation
Studies are presented to study the influence of the SiO2 fraction in the initial charge on the parameters of the final product synthesized during solid-flame combustion in the reactor. The phase composition has been established and the microstructure of the product has been determined. The final product was a powder consisting of equiaxed particles of sialon with the composition Si1.84Al0.16O1.16N1.84 and the halide salt Na3AlF6 with a small amount of Al2O3, Al, Si, AlN.
sialon, ceramics, solid-flame combustion, quartz sand, aerosil, silicon oxide, fraction, microstructure, phase composition
1. Klemm H. Silicon nitride for high-temperature applications // J. Am. Ceram. Soc.- Vol. 93 (6), 2010, pp. 1501-1522.
2. Izhevskiy V.A., Genova L.A., Bressiani J.C., et al. Progress in SiAlON ceramics // J. Eur. Ceram. Soc.- Vol. 20 (13), 2000, pp. 2275-2295.
3. Grigoriev S.N., Hamdy K., Volosova M.A., et al. Electrical discharge machining of oxide and nitride ceramics: a review // Mater. Des.- Vol. 209, 2021, pp. 109965.
4. Mittal D., Hostaˇsa J., Silvestroni L., et al. Tribological behaviour of transparent ceramics: a review // J. Eur. Ceram. Soc.- Vol. 42 (14), 2022, pp. 6303-6334.
5. Cai Y., Li X., Dong J. Properties of porous Si3N4 ceramic electromagnetic wave transparent materials prepared by technique combining freeze drying and oxidation sintering // J. Mater. Sci. Mater. Electron.- Vol. 25 (4), 2014, pp. 1949-1954.
6. Chen W., et al. Spark plasma sintering of multi-cation doped (Yb, Sm) α/β-SiAlON ceramic tool materials: effects of cation type, composition, and sintering temperature, Ceram. Int.- Vol. 48 (22), 2022, pp. 32730-32739.
7. Lao X., Tu Z., Xu X., et al. In-situ synthesis of nitride whiskers-bonded SiAlON–Al2O3 ceramics for solar thermal storage by aluminothermic nitridation of coal-series kaolin // Ceram. Int.- 48 (7), 2022, pp. 10227-10235.
8. Zhang Y., Yao D., Zuo K., et al. The synthesis of single-phase β-Sialon porous ceramics using self-propagating high-temperature processing // Ceram. Int.- Vol. 48 (3), 2022, pp. 4371-4375.
9. Lou B., Shen H., Liu B., et al. Recycling secondary aluminum dross to make building materials: a review // Construct. Build. Mater.- Vol. 409, 2023, pp. 133989.
10. Li Y., et al. Improved thermal shock resistance of β-SiAlON/h-BN composite prepared by a precursor infiltration pyrolysis (PIP) route // Ceram. Int.- Vol. 46 (10), 2020, pp. 16932-16937.
11. Aminaka K., Tatami J., Iijima M., et al. Effect of rare-earth oxide additives on transparency and fluorescence of α-SiAlON ceramics, Ceram. Int.- Vol. 48 (16), 2022, pp. 23195-23205.
12. Dong B., Deng C., et al. A novel method for synthesis of β–Sialon/Ti(C, N) composites using nitridation of Ti3SiC2 powder // J. Mater. Res. Technol.- Vol. 27, 2023, pp. 5340-5349.
13. Gautam A., et al. Environment-friendly machining of aerospace-grade Ti alloy using SiAlON ceramic and AlTiN coated carbide inserts under sustainable biodegradable mist condition // CIRP J. Manuf. Sci. Technol.- Vol. 39, 2022, pp. 185-198.
14. Bichurov G.V., Shiganova L.A. (Kondratieva L.A.), Titova Yu.V. Azide technology of self-propagating high-temperature synthesis of micro- and nanopowders of nitride compositions: monograph. - M.: Mashinostroenie, 2012. - 519 p.
15. Kondratieva L.A. Scheme of azide technology of self-expanding high-temperature synthesis of nitride powders // Journal of Technical Research.- Vol. 6., No. 1, 2020. - pp. 3-9.