from 01.01.2005 until now
Yekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
employee
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Currently, technologies have been developed and implemented to transform the biomass from lignocellulosic-containing raw materials (including wood), without the addition of synthetic binders, into composite materials with various applications. For these materials, the common term resinless "plastic", or abbreviated PWR, has become somewhat popular. The current test methods for determining the extent of biodegradation are not suitable for PWR. This facilitates determining the degree of biodegradability of PWR based on various pressing materials. A scoring-rating system was developed to assess the degree of biodegradability of PWR based on lignocellulosic raw materials, using the identified 5 main criteria when aged 85 days in the soil. The proposed scoring system was tested on samples of PWR derived from various pressing materials, including pine, birch, and larch sawdust, vegetative residues of knotweed and industrial hemp, wheat bran, and deciduous litter. The test results of PWR were processed using the proposed evaluation methodology, helping determine the potential for biodegradation of the investigated materials. In general, PWR-based materials can be characterized as materials with a high potential for biodegradation. The most potential for biodegradation can be considered PWR based on pine and leaf litter, which degrade as much as possible in the soil in 85 days. The established individual degrees of biodegradability of PWR based on various lignocellulosic raw materials were interpreted in the context of previously obtained results regarding the properties of the original raw materials. Thus, a conclusion was drawn that the degree of biodegradability of PWR is influenced by the properties of the original plant raw material under identical piezothermal treatment conditions during material production.
plastic, wood waste, plant waste, biodegradability, methodology, signs, express assessment, point system
1. Heyfec B. A., Chernova V. Yu. Sistema ocenki effektivnosti i monitoringa rezul'tatov politiki importozamescheniya. Ekonomika regiona. 2019; 15 (4): 1266-1278. https://doi.org/10.17059/2019-4-23.
2. Medvedev S. O., Zyryanov M. A., Mohirev A. P. Effektivnost' lesnoy otrasli Rossii po federal'nym okrugam: portfel'nyy analiz. Kreativnaya ekonomika. 2023; 17(2): 713-730. https://doi.org/10.18334/ce.17.2.117198.
3. Polyanskaya O. A., Tambi A. A., Mihaylova A. E. Razvitie lesopromyshlennogo kompleksa Rossiyskoy Federacii: problemy i perspektivy. Peterburgskiy ekonomicheskiy zhurnal. 2020; 4: 65-74. https://doi.org/10.24411/2307-5368-2020-10039.
4. Daria M., Krzysztof L., Jakub M. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. Journal of Cleaner Production. 2020; 268: 122-129. https://doi.org/10.1016/j.jclepro.2020.122129.
5. Sabirova G., Safin R., Mukhametzyanov S., Galyavetdinov N. Transition to biodegradable composites as a method for solving environmental problems. E3S Web of Conferences, Saint-Petersburg, 23–26 noyabrya 2020 goda. Saint-Petersburg, 2020: 01004. https://doi.org/10.1051/e3sconf/202022101004.
6. Nassar M. M. A., Alzebdeh K. I., Pervez T., Al-Hinai N., Munam A. J. Appl. Polym. Sci. 2021; e51284. URL: wileyonlinelibrary.com/journal/app 2021.
7. Buryndin V. G., Vurasko A. V., Gluhih V. V. [i dr.] Poluchenie polimernyh materialov iz vtorichnogo lignocellyuloznogo syr'ya. – Ekaterinburg, 2022. 188 s. URL: https://www.elibrary.ru/item.asp?id=49176994.
8. Adamcová D., Zloch V., Vaverková M. D. [et al.]. Research of the biodegradability of degradable/biodegradable plastic material in various types of environments / Scientific Review Engineering and Environmental Sciences. 2017; 26(1): 3-14. https://doi.org/10.22630/PNIKS.2017.26.1.01.
9. Susoeva I. V., Vahnina T. N., Ibragimov A. M. Ocenka resursnogo potenciala ispol'zovaniya pylevidnyh lignocellyuloznyh othodov dlya proizvodstva stroitel'nyh kompozicionnyh materialov. Izvestiya vysshih uchebnyh zavedeniy. Tehnologiya tekstil'noy promyshlennosti. 2019; 3(381): 37-41. URL: https://www.elibrary.ru/item.asp?id=41547117.
10. Prosvirnikov, D. B. Modelirovanie svoystv drevesno-kompozicionnyh materialov metodom parametricheskoy identifikacii. Sistemy. Metody. Tehnologii. 2020; 4 (48): 107-118. DOI: https://doi.org/10.18324/2077-5415-2020-4-107-118.
11. Ermolin V. N., Bayandin M. A., Namyatov A. V., Ostryakova V. A. Strukturno-mehanicheskie svoystva gidrodinamicheski aktivirovannoy drevesnoy massy v additivnyh tehnologiyah // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2023; 2 (392):1 21-131. https://doi.org/10.37482/0536-1036-2023-2-121-131.
12. Artemov A. V., Buryndin V. G., Krivonogov P. S. et al. An Investigation of Complexes of Lignin Found in Plant Raw Materials as a Natural Binder in Obtaining Plastic in Closed Molds. Polym. Sci. Ser. 2023; 16: 278–284. https://doi.org/10.1134/S1995421223020028.
13. Buryndin V. G., Bel'chinskaya L. I., Savinovskih A. V. [i dr.] Izuchenie polucheniya drevesnyh i rastitel'nyh plastikov bez svyazuyuschih v prisutstvii katalizatorov tipa polioksometallatov. Lesotehnicheskiy zhurnal. 2018; 8. 1(29): 128-134. https://doi.org/10.12737/article_5ab0dfc1e37185.35527284.
14. Pekhtasheva E. L., Raikova E. Yu., Chalykh T. I. [et al.] Biodegradation of polycaproamide textile materials. Bulgarian Chemical Communications. 2022; 54 (B2): 66-70. https://doi.org/10.34049/bcc.54.B2.0509.
15. Verevkin A. N., Kononov G. N., Serdyukova Yu. V., Zaycev V. D. Biodegradaciya drevesiny fermentnymi kompleksami derevorazrushayuschih gribov. Lesnoy vestnik. 2019; 23(5): 95-100. https://doi.org/10.18698/2542-1468-2019-5-95-100.
16. Kryazhev D. V., Smirnov V. F., Smirnova O. N. [i dr.] Analiz metodov ocenki biostoykosti promyshlennyh materialov (kriterii, podhody). Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013; 2(1): 118-124. URL: https://www.elibrary.ru/item.asp?id=19066914.
17. Popov A. A. Biorazlagaemye polimernye kompozicii na osnove poliolefinov. Vysokomolekulyarnye soedineniya. Seriya A. 2021; 63 (6): 384-399. https://doi.org/10.31857/S2308112021060092.
18. Ostrouh O. V., Ignatenko A. V., Boltovskiy V. S. Analiz biostoykosti drevesiny i zaschitnyh pokrytiy. Materialy, tehnologii, instrumenty. 2012; 17 (4): 43-47.
19. Glukhikh V., Buryndin P., Artyemov A. [et al.] Plastics: physical-and-mechanical properties and biodegradable potential. Foods and Raw Materials. 2020; 8(1): 149–154. https://doi.org/10.21603/2308-4057-2020-1-149-154.
20. Ermolovich O. A., Makarevich A. V., Goncharova E. P., Vlasova G. M. Metody ocenki biorazlagaemosti polimernyh materialov. 2005; 4: 47-54. URL: https://www.elibrary.ru/item.asp?id=9567085.
21. Matematicheskoe planirovanie eksperimentov i analiz ih rezul'tatov s primeneniem komp'yuternyh programm : uchebnoe posobie / V. V. Gluhih, A. E. Shkuro, A. V. Artemov [i dr.]. – Ekaterinburg, 2023. – 104 s. – ISBN 978-5-94984-864-7. – URL: https://www.elibrary.ru/item.asp?id=53945028.
22. Chubinskiy M. A., Chauzov K. V. Issledovanie svoystv drevesiny listvennicy i listvennichnyh stroitel'nyh materialov // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2016; 215: 255-265. https://doi.org/.21266/2079-4304.2016.215.255-265.
23. Gluhih V. N., Ohlopkova A. Yu., Sivcev P. V. Issledovanie korobleniya i chislennoe modelirovanie deformacii pilomaterialov iz drevesiny listvennicy daurskoy pod deystviem nachal'nyh napryazheniy stvola dereva // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2018; 222: 188-201. https://doi.org/https://doi.org/10.21266/2079-4304.2018.222.188-201.
24. Sudakova I. G., Garynceva N. V., Ivanov I. P. [i dr.]. Vydelenie i primenenie suberina iz beresty kory berezy. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Himiya. 2012; 5 (2): 168-177. URL: https://www.elibrary.ru/item.asp?id=18065356.
25. Gel'fand E. D., Melehov V. I., Potykalova M. V. Mehanicheskaya deformaciya drevesiny kak sredstvo uvelicheniya vlagopogloschayuschey sposobnosti. Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2008; 4: 15. URL: https://www.elibrary.ru/item.asp?id=11927105.
26. Esbatyr A. E., Korul'kin D. Yu. Vydelenie kumarinov dlya ispol'zovaniya v farmacevticheskoy promyshlennosti. Vestnik Kazahskogo nacional'nogo medicinskogo universiteta. 2016; 4: 328-330. URL: https://www.elibrary.ru/item.asp?id=32403920.
27. Dubrovin M. S. Primenenie tehnicheskoy konopli v proizvodstve shirokogo spektra produkcii razlichnogo naznacheniya. International Agricultural Journal. 2022; 65 (2). https://doi.org/10.55186/25876740_2022_6_2_30.
28. Belopuhov S. L., Baybekov R. F., Zharkih O. A. Himicheskiy sostav masla iz semyan konopli sorta Surskaya. Vestnik nauki. 2019; 9 (18): 57-59. URL: https://www.elibrary.ru/item.asp?id=39252411.