Structural strength characteristics of fiber cement soil in road pavement of timber roads in the Sverdlovsk region
Abstract and keywords
Abstract (English):
The solution to the problem of increasing the efficiency of the technology for strengthening soils of logging highway structures can be dispersed reinforcement of the cement-soil matrix with fiber. The resulting composite material, fiber cement soil, in the forest zone has increased strength properties and crack resistance. In order to study the structural strength characteristics of fiber cement soil: the angle of internal friction and the specific coefficient of adhesion, laboratory studies were carried out using a single-plane cutting unit GT 0.2.1. Samples of fiber cement soil were made on the basis of natural soil from the subgrade of a logging road in the Sverdlovsk region containing 2 %, 4 %, 6 % Portland cement and 0 %, 0.75 %, 1.5 % fiber based on waste from the production of basalt thermal insulation boards. Structural strength characteristics were determined and it was found that the addition of basalt fiber in the composition of fiber cement soil affects the angle of internal friction at a significance level of p = 0.000026 and at p = 0.000016 the specific coefficient of adhesion depending on the content of Portland cement. With a content of 2 % Portland cement, the addition of 1.5 % basalt fiber reduces the specific coefficient of adhesion by 8 % (10 kPa) and the angle of internal friction by 1°, due to the insufficient development of the cement-soil matrix of the fiber-cement soil. With a content of 6% Portland cement, the addition of 1.5 % basalt fiber increases the adhesion coefficient by 43 % (258.7 kPa) and the angle of internal friction by 2°, due to retention in the cement-soil matrix and the perception of external loads by the fiber due to axial tension. It is advisable to use the obtained indicators of specific adhesion and angle of internal friction for modeling and calculating road pavement structures for logging roads made of fiber cement soil using the finite element method, taking into account loads from timber transport and difficult natural conditions of the forest zone.

Keywords:
logging road, fiber cement soil, soil strengthening, road pavement, angle of internal friction, specific coefficient of adhesion, dispersed reinforcement
Text
Publication text (PDF): Read Download
References

1. Voskanyanc, K. E. Razrabotka sostavov i tehnologiy ukrepleniya i stabilizacii gruntov dlya avtodorozhnogo stroitel'stva. Nauchnye issledovaniya. 2018; 6: 23-25. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=35128618.

2. Katarov, V. K. Resursosberegayuschaya metodika rascheta dorozhnyh odezhd lesovoznyh dorog. Resources and technology. 2020; 1: 1-13. Rezhim dostupa: https://elibrary.ru/item.asp?id=42899012.

3. Konovalova N. A., Dabizha O. N., Pankov P. P., Rush E. A. Utilizaciya gidroliznogo lignina v sostavah cementogruntov. Ekologiya i promyshlennost' Rossii. 2019; 11: 32-37. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=41321614.

4. Mohirev, A. P. Faktory, vliyayuschie na propusknuyu sposobnost' lesovoznyh dorog / A. P. Mohirev, S. O. Medvedev, O. N. Smolina // Lesotehnicheskiy zhurnal. – 2019. – T. 9. – № 3 (35). – S. 103–113. – Rezhim dostupa: https://elibrary.ru/item.asp?id=40824797.

5. Stepanec V. G., Gerasimova S. A. Osnovaniya dorozhnyh odezhd iz ukreplennyh gruntov povyshennoy prochnosti i morozoustoychivosti. Molodoy uchenyy. 2020; 22 (312): 148-154. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=42932994.

6. Chernyshova E. V., Skrypnikov A. V., Samcov V. V., Abasov M. A. Lesovoznye dorogi v transportnoy seti lesopromyshlennogo predpriyatiya. Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2019; 2 (368): 95-101. Rezhim dostupa: https://elibrary.ru/item.asp?id=37320551.

7. Chudinov, S. A. FGBOU VO «Ural'skiy gosudarstvennyy lesotehnicheskiy universitet». Fibrocementogruntovaya smes'. Patent 2785742 Rossiyskaya Federaciya, MPK E02D 3/12, E01S 3/04, E01S 7/36, S04V 28/04, S04V 111/20; Zayavl. 05.03.2022: Opubl. 12.12.2022. – 9 s. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=49994489.

8. Chudinov, S. A. Sovershenstvovanie tehnologii ukrepleniya gruntov v stroitel'stve avtomobil'nyh dorog lesnogo kompleksa : monogr. / S. A. Chudinov. – Ekaterinburg : UGLTU, 2022. – 164 s. – Rezhim dostupa: https://www.elibrary.ru/item.asp?id=53667094.

9. Chudinov, S. A. Ukreplennye grunty v stroitel'stve lesovoznyh avtomobil'nyh dorog : monogr. / S. A. Chudinov. – Ekaterinburg : UGLTU, 2020. – 174 s. – Rezhim dostupa: https://www.elibrary.ru/ item.asp?id=42927809.

10. Chudinov S. A., Chernyak R. D., Dmitriev V. N., Bayc O. N. Opytno-proizvodstvennye issledovaniya primeneniya zoloshlakovyh othodov v dorozhnom stroitel'stve. Dorogi i mosty. 2022. 2 (48): 254-273. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=49855844.

11. Ali M., Aziz M., Hamza M., Madni M. F. Engineering properties of expansive soil treated with polypropylene fibers. Geomech Eng. 2020. 22: 227–236. https://doi.org/10.12989/gae.2020.22.3.227.

12. Ayeldeen M., Azzam W., Arab M. G. The use of fiber to improve the characteristics of collapsible soil stabilized with cement. Geotech Geol Eng. 2022. 40: 1873–1885. https://doi.org/10.1007/S10706-021-01997-4/FIGURES/12.

13. Cho Y. K., Jung S. H., Choi Y. C. Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Constr Build Mater. 2019. 204: 255–264. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.208.

14. Chudinov S. The use of ash-mineral mixtures for the construction of high-strength coatings of forest roads. IOP Conference Series: Earth and Environmental Science. 2020. 574: 012010. https://doi.org/10.1088/1755-1315/574/1/012010.

15. Chudinov S. Improving the physical and mechanical properties of fortified soil for road construction in the forest zone. IOP Conference Series: Materials Science and Engineering. 2020. 817: 012007. https://doi.org/10.1088/1757-899X/817/1/012007.

16. De Jesús Arrieta Baldovino J., Dos Santos Izzo R., Rose J. L., Avanci M. A. Geopolymers based on recycled glass powder for soil stabilization. Geotechn Geolog Eng. 2020. 38(4): 4013–4031. https://doi.org/10.1007/s10706-020-01274-w.

17. Elkhebu A., Zainorabidin A., Asadi A. et al. Effect of incorporating multifilament polypropylene fibers into alkaline activated fly ash soil mixtures. Soils Found. 2019. 59: 2144-2154. https://doi.org/10.1016/j.sandf.2019.11.015.

18. Ghanizadeh A. R., Salehi M., Jalali F. Investigating the effect of lime stabilization of subgrade on the fatigue & rutting lives of flexible pavements using the nonlinear mechanistic-empirical analysis. Geotech Geol Eng. 2022. 41: 1287-1307. https://doi.org/10.1007/s10706-022-02336-x.

19. Ghorbani A., Hasanzadehshooiili H. Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils Found. 2018. 58: 34–49. https://doi.org/10.1016/j.sandf.2017.11.002.

20. Godoy V. B., Tomasi L. F., Benetti M. et al. Effects of curing temperature on sand-ash-lime mixtures with fibres and NaCl. Geotech Geol Eng. 2023. 3: 1–15. https://doi.org/10.1007/S10706-023-02386-9/FIGURES/12.

21. Gong Y., He Y., Han C. et al. Stability analysis of soil embankment slope reinforced with polypropylene fiber under freeze-thaw cycles. Adv Mater Sci Eng. 2019. 2019: 10. https://doi.org/10.1155/2019/5725708.

22. Liu J., Yang K., Gurpersaud N. Tensile strength of cement-treated champlain sea clay. Geotech Geol Eng. 2022. 40: 5467–5480. https://doi.org/10.1007/s10706-022-02226-2.

23. Mazhar S., Guha Ray A. Stabilization of expansive clay by fibre-reinforced alkali-activated binder: an experimental investigation and prediction modelling. Int J Geotech Eng. 2021. 15: 977–993. https://doi.org/10.1080/19386362.2020.1775358.

24. Mousavi F., Abdi E. Unconfined compression strength of polymer stabilized forest soil clay. Geotech Geol Eng. 2022. 40: 4095–4107. https://doi.org/10.1007/s10706-022-02142-5.

25. Muñoz Y. O., de Almeida J. L., Mora A. J. E. V. et al. The Behavior of Stabilized Reinforced Soil for Road Embankments Application. Geotech Geol Eng. 2023. 41: 2599–2628. https://doi.org/10.1007/s10706-023-02416-6.

26. Nezhad M. G., Tabarsa A., Latifi N. Effect of natural and synthetic fibers reinforcement on California bearing ratio and tensile strength of clay. J Rock Mech Geotech Eng. 2021. 13: 626–642. https://doi.org/10.1016/j.jrmge.2021.01.004.

27. Ordoñez Muñoz Y., dos Santos L., Izzo R., Leindorf de Almeida J. et al. The role of rice husk ash, cement and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba formation. Transp Geotech. 2021. 31: 100673. https://doi.org/10.1016/j.trgeo.2021.100673.

28. Shen D., Liu X., Zeng X. et al. Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Constr Build Mater. 2020. 244: 117874. https://doi.org/10.1016/j.conbuildmat.2019.117874.

29. Tiwari N., Satyam N., Singh K. Effect of curing on micro-physical performance of polypropylene fiber reinforced and silica fume stabilized expansive soil under freezing thawing cycles. Sci Rep. 2020. 10: 6724. https://doi.org/10.1038/s41598-020-64658-1.

30. Vijayan D. S. Effect of Solid waste based stabilizing material for strengthening of Expansive soil. A review. Environmental Technology & Innovation. 2020. 20: 54-61. https://doi.org/10.1016/j.eti.2020.101108.

31. Wei H., Zhang Y., Cui J. et al. Engineering and environmental evaluation of silty clay modified by waste fly ash and oil shale ash as a road subgrade material. Constr Build Mater 2019. 196:204–213. https://doi.org/10.1016/j.conbuildmat.2018.11.060.

32. Yadav J. S., Tiwari S. K., Shekhwat P. Strength behaviour of clayey soil mixed with pond ash, cement and randomly distributed fibres. Transp Infrastruct Geotechnol 2018. 5:191–209. https://doi.org/10.1007/s40515-018-0056-z.

33. Zainorabidin A., Agustina D. H. Effect of moisture content of cohesive subgrade soil. Matec Web of Conferences. 2018. 195: 1-7. https://doi.org/10.1051/matecconf/201819503010.

34. Zentar R., Wang H., Wang D. Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Constr Build Mater. 2021. 279: 122447. https://doi.org/10.1016/j.conbuildmat.2021.122447.


Login or Create
* Forgot password?