Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
St. Petersburg, Russian Federation
Yakutsk, Russian Federation
from 01.01.2016 until now
Novosibirsk, Novosibirsk, Russian Federation
Paratunka, Russian Federation
Ekaterinburg, Russian Federation
Moscow, Russian Federation
We have analyzed spatial and temporal variations in ionospheric parameters over high and middle latitudes of Eurasia, using data from chains of high- and mid-latitude ionosondes during a severe magnetic storm in March 2015. To analyze the ionospheric response to the severe geomagnetic disturbance of solar cycle 24, we have employed ionosonde data on hourly average values of the critical frequency foF2 of the ionospheric F2 layer, the critical frequency of the sporadic layer foEs, and the minimum reflection frequency fmin. There are strong latitudinal and longitudinal differences between the features of temporal variations in the analyzed ionospheric parameters both under quiet conditions before the magnetic storm onset and during the storm. We discuss possible causes of the observed spatial variations in ionospheric parameters. The source of spatio-temporal variations in ionospheric ionization parameters may be inhomogeneities generated in the high-latitude ionosphere under conditions of increased helio-geomagnetic activity. During the magnetic storm main and recovery phases, periods of blackouts of radio signals from ionosondes were observed at both high and middle latitudes. During these periods, there was a significant increase in the absorption of radio waves used in ionosonde sounding, as well as in the frequency of occurrence of screening sporadic Es layers. The long-term effect of the negative ionospheric storm over high and middle latitudes of Europe is explained by the movement of the vast region of the reduced density ratio [O]/[N2] at thermosphere heights from the Far East and Siberia westward to Europe during the late recovery phase of the magnetic storm. Increased ionization of the ionospheric F2 layer with foF2 exceeding the level for quiet days before the onset of the magnetic disturbance over the vast region of Eastern, Western Siberia and Eastern Europe after the end of the magnetic storm in March 2015 is a manifestation of the aftereffect of magnetic storms. The increase in ionization was especially pronounced, as measured by the chain of mid-latitude ionosondes.
high- and mid-latitude ionosphere, ionosonde chain, geomagnetic storm, variations in ionosphere ionization, variations in thermosphere composition
1. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity. Radio Sci. 2005, vol. 40, RS5009. DOI:https://doi.org/10.1029/2004RS003179.
2. Blagoveshchensky D.V., Maltseva O.A., Anishin M.M.,. Rogov D.D. Sporadic Es layers at high latitudes during a magnetic storm of March 17, 2015 according to the vertical and oblique ionospheric sounding data. Radiophysics and Quantum Electronics. 2017, vol. 60, no. 06, pp. 456–466. DOI:https://doi.org/10.1007/s11141-017-9814-y.
3. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of Ionosphere]. Moscow, Nauka Publ., 1988, 527 p. (In Russian).
4. Buonsanto M.J. Ionospheric storms — a review. Space Sci. Rev. 1999, vol. 88, pp. 563–601.
5. Burešová D., Laštovička J., De Franceschi G. Manifestation of Strong Geomagnetic Storms in the Ionosphere above Europe. Space Weather. J. Lilensten (ed.), Springer. 2007, pp. 185–202.
6. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., Stepanov A.E., et al. Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2019, vol. 16, no. 5, pp. 336–347. DOI:https://doi.org/10.21046/2070-7401-2019-16-5-336-347. (In Russian).
7. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S. Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the ionosonde and GPS/GLONASS data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space].. 2020, vol. 17, no. 4, pp. 269–281. DOI:https://doi.org/10.21046/2070-7401-2020-17-4-269-281. (In Russian).
8. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations. Adv. Space Res. 2021, vol. 67, no. 2, pp. 762–776. DOI:https://doi.org/10.1016/j.asr.2020.10.028.
9. Chernigovskaya M.A., Yasyukevich A.S., Khabituev D.S. Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storms in March 2012 from ionosonde and GPS/GLONASS data. Solar-Terr. Phys. 2023, vol. 9, iss. 4, pp. 99–110. DOI:https://doi.org/10.12737/stp-94202313.
10. Chernigovskaya M.A., Setov A.G., Ratovsky K.G., Kalishin A.S., Stepanov A.E. Variability of ionospheric ionization over Eurasia according to data from a high-latitude ionosonde chain during extreme magnetic storms in 2015. Solar-Terr. Phys. 2024, vol. 10, iss. 2, pp. 34–47. DOI:https://doi.org/10.12737/stp-102202404.
11. Christensen A.B., Paxton L.J., Avery S., Craven J., Crowley G., Humm D.C., et al. Initial observations with the Global Ultraviolet Imager (GUVI) on the NASA TIMED satellite mission. J. Geophys. Res. 2003, vol. 108, no. A12, p. 1451. DOI:https://doi.org/10.1029/2003JA009918.
12. Danilov A.D. Long-term trends of foF2 independent on geomagnetic activity. Ann. Geophys. 2003, vol. 21, no. 5, pp. 1167–1176.
13. Deminov M.G. Earth’s ionosphere: patterns and mechanisms. Electromagnetic and plasma processes from the interior of the Sun to the interior of the Earth. IZMIRAN-75. Moscow, 2015, pp. 295–346. (In Russian).
14. Deminov M.G., Shubin V.N. Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy. 2018, vol. 58, no. 3, pp. 348–355. DOI: 10.1134/ S0016793218030064.
15. Deminov M.G., Karpachev A.T., Afonin V.V., Smilauer J. Changes in the position of the main ionospheric trough as a function of longitude and geomagnetic activity. Geomagnetism and.Aeronomy. 1992, vol. 32, no. 5, pp. 185–188. (In Russian).
16. Gololobov A.Yu., Golikov I.A., Popov V.I. Modeling of the high-latitude ionosphere taking into account the mismatch of the geographic and geomagnetic poles. Vestnik of North-Eastern Federal University. 2014, vol. 11, no. 2, pp. 46–54. (In Russian).
17. Enell C.-F., Kozlovsky A., Turunen T., Ulich T., Välitalo S., Scotto C., Pezzopane M. Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms. Geosci. Instrum. Method. Data Syst. 2016, no. 5, pp. 53–64. DOI:https://doi.org/10.5194/gi-5-53-2016.
18. Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and its Effects on Radio Propagation. Cambridge University Press, New York, 2003, 617 p.
19. Kalishin A.S., Blagoveshchenskaya N.F., Troshichev O.A., Frank-Kamenetskii A.V. FGBU «AARI». Geophysical research in high latitudes. Vestnik RFFI. Antarktida i Arktika: Polyarnye issledovaniya [RFBR J. Antarctica and Arctic: Polar Research]. 2020, no. 3-4 (107–108), pp. 60–74. DOI:https://doi.org/10.22204/2410-4639-2020-106-107-3-4-60-78. (In Russian).
20. Karpachev A.T. Model of the ionospheric trough for daytime winter conditions based on data from Interkosmos-19 and champ satellites. Geomagnetism and Aeronomy. 2019, vol. 59, pp. 383–397. DOI:https://doi.org/10.1134/S0016793219040091.
21. Karpachev A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms. J. Geophys. Res. 2021, vol. 126, e2020JA028079. DOI:https://doi.org/10.1029/2020JA 028079.
22. Karpachev A.T., Klimenko M.V., Klimenko V.V. Longitudinal variations of the ionospheric trough position. Adv. Space Res. 2019, vol. 63, iss. 2, pp. 950–966. DOI: 10.1016/ j.asr.2018.09.038.
23. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., Andreeva E.S., et al. Disturbances of the thermosphere–ionosphere–plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 78–92. DOI: 10.1016 /j.jastp.2017.12.017.
24. Kolesnik A.G., Golikov I.A. Three-dimensional model of the high-latitude region F, taking into account the discrepancy between geographical and geomagnetic coordinates). Geomagnetism and Aeronomy. 1982, vol. 22, no. 3, pp. 435–439. (In Russian).
25. Kozlovsky A., Turunen T., Ulich T. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. J. Geophys. Res. 2013, vol. 118, pp. 5265–5276.
26. Krasheninnikov I., Pezzopane M., Scotto C. Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde. Computers & Geosciences. 2010, vol. 36, pp. 628–635. DOI:https://doi.org/10.1016/j.cageo.2009.09.013.
27. Krinberg I.A., Tashchilin A.V. Ionosphere and Plasma- sphere). M.: Nauka, 1984, 188 p. (In Russian).
28. Laštovička J. Monitoring and forecasting of ionospheric space weather effects of geomagnetic storms. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 697–705. DOI:https://doi.org/10.1016/S1364-6826(02)00031-7.
29. Liou K., Newell P.T., Anderson B.J., Zanetti L., Meng C.-I. Neutral composition effects on ionospheric storms at middle and low latitudes. J. Geophys. Res. 2005, vol. 110, p. A05309. DOI:https://doi.org/10.1029/2004JA010840.
30. Loewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14,209–14,213.
31. MacDougall J.W., Grant I.F., Shen X. The Canadian advanced digital ionosonde: design and results. WDC A for Solar-Terrestrial Physics, Report UAG-104, Boulder, Colorado, USA. 1995, pp. 21–27.
32. Mamrukov A.P., Khalipov V.L., Filippov L.D., Stepanov A.E., Zikrach EH.K., Smirnov V.F., Shestakova L.V. Geophysical information on oblique radio reflections at high latitudes and their classification). Issledovaniya po geomagnetizmu, aehronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. Novosibirsk, SB RAS Publ. 2000, vol. 111, pp. 14–27. (In Russian).
33. Matsushita S. A study of the morphology of ionospheric storms. J. Geophys. Res. 1959, vol. 64, no. 3, pp. 305–321. DOI:https://doi.org/10.1029/JZ064i003p00305.
34. Mikhailov A.V. Ionospheric F2-layer storms. Física de la Tierra. 2000, vol. 12, pp. 223–262.
35. Mitra A. Impact of solar flares on the Earth's ionosphere. Moscow, Mir Publ., 1977, 372 p. (In Russian).
36. Perevalova N.P., Ratovsky K.G., Zherebtsov G.A., Yasyukevich A.S. Correlation of short-period wave disturbances of the peak electron density of the F2 layer and the total electron content in the ionosphere. Doklady Earth Sciences, 2023, vol. 513, no. 1, pp. 1194–1199. DOI:https://doi.org/10.1134/S1028334X2360192X.
37. Polyakov V.M., Shchepkin L.A., Kazimirovsky E.S., Kokourov V.D. Ionospheric processes. Novosibirsk: Nauka, 1968, 535 p. (In Russian).
38. Prölss G.W., Werner S. Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms. J. Geophys. Res. 2002, vol. 107, no. A2, p. 1016. DOI: 10.1029/ 2001JA900126.
39. Ratovsky K.G., Klimenko M.V., Klimenko V.V., Chirik N.V., Korenkova N.A., Kotova D.S., Aftereffects of geomagnetic storms: statistical analysis and theoretical explanation. Solar-Terr. Phys. 2018, vol. 4, no. 4, pp. 26–32. DOI:https://doi.org/10.12737/stp-44201804.
40. Ratovsky K.G., Klimenko M.V., Yasyukevich Y.V., Klimenko V.V., Vesnin A.M. Statistical analysis and interpretation of high-, mid-and low-latitude responses in regional electron content to geomagnetic storms. Atmosphere. 2020, vol. 11, no. 12, p. 1308. DOI:https://doi.org/10.3390/atmos11121308.
41. Reinisch B.W., Haines D.M., Bibl K., Galkin I., Huang X., Kitrosser D.F., Sales G.S., Scali J.L. Ionospheric sounding support of OTH radar. Radio Sci. 1997, vol. 32, no. 4, pp. 1681–1694.
42. Tumanova Yu.S., Andreeva E.S., Nesterov I.A. Observations of an ionospheric trough over Europe at different levels of geomagnetic disturbance based on radio tomography data. Uchenye zapiski fizicheskogo fakul’teta MGU [Memoirs of the Faculty of Physics, Lomonosov Moscow State University]. 2016, no. 3, 163906. (In Russian).
43. Vystavnoy V.M., Makarova L.N., Shirochkov A.V., Egorova L.V. Investigations of the high-latitude ionosphere by using data of the modern digital vertical ionosonde CADI, Geliogeofizicheskie issledovaniya, 2013, Vol. 4, pp. 1–10 (in Russian).
44. URL: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed April 22, 2024).
45. URL: http://ckp-rf.ru/ckp/3056/ (accessed April 22, 2024).
46. URL: https://www.ukssdc.ac.uk (accessed April 22, 2024).