SELECTING AN OPTIMALITY CRITERION WHEN MAKING MANAGEMENT DECISIONS IN COMPLEX TECHNICAL SYSTEMS
Abstract and keywords
Abstract (English):
Criteria for the optimality of a management decision make it possible to predict possible options for solving a problem, analyze the influence of various factors and optimize the operation of the system. An effective management decision implies the choice of an option for solving a given problem that corresponds to the best achievement of the goal, in terms of initial information about the problem. Automating the search for multiple valid management decisions can significantly speed up the design process and provide more effective interaction between humans and systems. The use of a rational optimality criterion, taking into account the various stages of the system’s operation, will help to select optimal management decisions and achieve the goals of the project. Thus, the correct choice of optimality criterion ensures an effective search for solutions and helps to determine the set of optimal solutions for the designed technical system. This in turn allows you to increase the efficiency and quality of the organization. The purpose of this work is to substantiate the choice of optimality criterion for a management decision when designing a complex system - a logging highway. An analysis of existing criteria was carried out. An optimality criterion has been proposed and justified, denoting the effect of the construction of a logging road, calculated over the period from the beginning of its construction to the start of the first major repair. A system for automated search for management decisions is described.

Keywords:
Optimality criterion, management decision, complex technical system, logging road, automated search for solutions.
References

1. Nikitin, D.M. Metody i modeli obosnovaniya upravlencheskih resheniy i sposoby povysheniya effektivnosti upravlencheskih resheniy / D.M. Nikitin // Tendencii razvitiya nauki i obrazovaniya. - 2019. - №57(7). - S. 50-54.

2. Gruzinova, I.S. Upravlencheskoe reshenie i ego rol' v upravlencheskoy deyatel'nosti / I.S. Gruzinova, A.S. Soboleva // Aktual'nye issledovaniya. - 2021. - №52(79). - S. 45-48.

3. Obosnovanie kriteriya optimal'nosti / Ya.Ya. Eglit, D.G. Kuznecov, K.Ya. Eglite, E.V. Vinogradova // Vestnik gosudarstvennogo morskogo universiteta imeni admirala F.F. Ushakova. - 2022. - №4(41). - S. 63-65.

4. Rudenok, P.B. Razrabotka kriteriya optimal'nosti processa modernizacii proizvodstva / P.B. Rudenok // Dostizheniya nauki i obrazovaniya. - 2018. - T. 2, №7(29). - S. 32-34.

5. Ocenka ekonomicheskoy effektivnosti proektnyh resheniy avtomobil'nyh lesovoznyh dorog / D.E. Boltnev [i dr.] // Stroitel'nye i dorozhnye mashiny. -2021. - № 5. - S. 49-53.

6. Mamleev, T.F. Model' prinyatiya resheniy po formirovaniyu sostava komplekta izmeritel'noy tehniki s uchetom neskol'kih kriteriev optimal'nosti / T.F. Mamleev, V.S. Soldatenko // Vestnik metrologa. - 2020. - №3. - S. 3-8.

7. Semenov, N.A. Osnovnye principy sozdaniya sistem avtomatizacii proektirovaniya i upravleniya v mashinostroitel'nyh proizvodstvennyh sistemah / N.A. Semenov, G.B. Burdo // Programmnye produkty i sistemy. - 2019. - №1. - S. 134-140.

8. Informacionno-intellektual'naya sistema proektirovaniya lesotransportnyh setey / V.V. Nikitin [i dr.] // Avtomatizaciya. Sovremennye tehnologii. - 2022. - T. 76, № 4. - S. 185-188.

9. Avtomatizirovannoe proektirovanie prodol'nogo profilya lesovoznyh avtomobil'nyh dorog s uchetom vliyaniya zritel'no plavnyh i izlomannyh liniy / A.O. Borovlev [i dr.] // Avtomatizaciya. Sovremennye tehnologii. - 2021. - T. 75, № 10. - S. 450-453.

10. Velikanov, S.A. Osnovnye zakony razvitiya tehnicheskih sistem v sochetanii s prognozirovaniem razvitiya tehnicheskih sistem / S.A. Velikanov // Molodoy uchenyy. - 2018. - №21(207). - S. 26-34.

11. Bakirova, L.R. Software-technical complex for the development and maintenance of automatic control systems of technological processes / L.R. Bakirova, S.N. Huseynov // Black Sea Scientific Journal of Academic Research. - 2019. - T. 51, №8. - S. 4-9.

12. Hashemi, A. Ensemble of feature selection algorithms: a multi-criteria decision-making approach / A. Hashemi, M.B. Dowlatshahi, H. Nezamabadi-pour // International Journal of Machine Learning and Cybernetics. - 2022. - Vol. 13. - Pp. 49-69. - DOI:https://doi.org/10.1007/s13042-021-01347-z.

13. Lemeshkina, V.R. Derevo resheniy kak metod prinyatiya upravlencheskogo resheniya / V.R. Lemeshkina // Alleya nauki. - 2022. - T.1, №2(65). - S. 375-380.

14. Muntyan, E.R. Realizaciya nechetkoy modeli vzaimodeystviya ob'ektov slozhnyh tehnicheskih sistem na osnove grafov / E.R. Muntyan // Programmnye produkty i sistemy. - 2019. - №3. -S. 411-418.

15. Bochkov, A.P. Ocenka soglasovannosti i sovmestimosti tehnicheskih sistem v sostave slozhnyh organizacionno-tehnicheskih sistem / A.P. Bochkov, A.M. Baranovskiy, R.G. Gil'vanov // Sistemy upravleniya, svyazi i bezopasnosti. - 2020. - №1. - S. 284-301.

16. Palyuh, B.V. Realizaciya ekspertnoy sistemy dlya ocenki innovacionnosti tehnicheskih resheniy / B.V. Palyuh, V.K. Ivanov, I.V. Obrazcov // Programmnye produkty i sistemy. - 2019. - №4. - S. 696-707.

17. Pozin, B.A. Requirements traceability as the basis for designing a functional and logical architecture of a software system / B.A. Pozin, G.N. Tsiperman // Proceedings of the Institute for System Programming of the RAS. - 2022. - V. 34, №1. - P. 23-34.

18. Valeev, S.S. Analysis of business processes in a distributed organizational and technical system based on snapshots / S.S. Valeev, N.V. Kondratyeva // Computational Technologies. - 2023. - V. 28, №1. - S. 41-47.

19. Sadrfaridpour, E. Engineering fast multilevel support vector machines / E. Sadrfaridpour, T. Razzaghi, I. Safro // Machine Learning. - 2019. - V. 108, №11. - Pp. 1879-1917.

20. Thumbakara, R.K. Subdivision graph, power and line graph of a soft graph / R.K. Thumbakara, B. George, J. Jose // Communications in Mathematics and Applications. - 2022. - T. 13, №1. - S. 75-85.

21. Generating adaptation rule-specific neural networks / T. Bureš [et al.] // International Journal on Software Tools for Technology Transfer. - 2023. - Vol. 25. - Pp. 733-746. - DOI:https://doi.org/10.1007/s10009-023-00725-y.

22. Regenerating Networked Systems’ Monitoring Traces Using Neural Networks / K.O. Paim [et al.] // Journal of Network and Systems Management. - 2024. - Vol. 32, № 16. - DOI:https://doi.org/10.1007/s10922-023-09790-9.

23. Dynamical Systems-Based Neural Networks / E. Celledoni [et al.] // SIAM Journal on Scientific Computing. - 2023. - Vol. 45. - Pp. A3071-A3094. - DOI:https://doi.org/10.1137/22M1527337.

24. A multimodal dialogue system for improving user satisfaction via knowledge-enriched response and image recommendation / J. Wang, H. Li, L. Wang, W. Chunlei // Neural Computing and Applications. - 2023. Vol. 35. - Pp. 13187-13206. - DOI:https://doi.org/10.1007/s00521-023-08409-z.

25. Firdaus, M. A Unified Framework for Slot based Response Generation in a Multimodal Dialogue System / M. Firdaus, A. Madasu, A. Ekbal // Multimedia Tools and Applications. - 2024. - Vol. 83. - Pp. 11643-11667. - DOI:https://doi.org/10.1007/s11042-023-15915-8.

Login or Create
* Forgot password?