Yekaterinburg, Ekaterinburg, Russian Federation
Yekaterinburg, Ekaterinburg, Russian Federation
Yekaterinburg, Ekaterinburg, Russian Federation
UDK 581.5 Экология растений. Этология. Растение и окружающая среда (биономия)
The Trans-Ural region is the southern point of the common heather (C. vulgaris) range. Field ecophysiological study of C. vulgaris plants transpiration intensity (IT) was carried out in connection with the problem of marginal populations adaptation to arid climate. The research was carried out in the forest-steppe of the Trans-Ural region (Kurgan region), where an abundant population of heather grows. The dailyvariation of IT was studied taking into account a set of recorded ecoclimate limiting factors (wind speed, illumination, dynamics of air temperature and humidity, soil temperature) during one growing season (from April to September 2016) under the canopy of a pine forest and in the adjacent clearing. To study IT, annual apical shoots of plants 4 cm long were used in triplicate for each time period. The total sample size on one day of measurements ranged from 30-35 shoots. The transpiration rate was determined by the rapid weighing method, which takes into account the water lost by the shoot over a certain time period. When processing the data, we used correlation analysis (Pearson's correlation coefficient r), which made it possible to clarify the strength and direction of two continuous (metric) variables interaction. Differences in IT daily changes were revealed in plants growing under the forest canopy and in the open areas. Under conditions of long-term atmospheric and soil drought, which is common for the region, in 2016 a sharp decrease in heather water content was observed, starting from 10 a.m. throughout the entire growing season, with the exception of April, when the moisture deficit in the soil and heather tissues was still minimal. In May, maximum IT values in the clearing were noted at 14:00 (8.5 mg/h×10 –4) whereas under the canopy of the tree stand, peak IT values begin at 10 a.m. (12.7 mg/h×10 –4). Daytime summer transpiration in common heather (C. vulgaris) is even less intense than spring transpiration ((3–5 mg/h×10–4).It was revealed that meteorological factors play a decisive role in IT in various types of forest. In open felled areas, the determining factor is PAR (0.81, p < 0.05) and, to a lesser extent, atmospheric temperature (0.69, p < 0.05), and under the canopy - only PAR (0.96, p <0.05). A decrease in IT and, accordingly, photosynthesis leads to a decrease in the population’s vitality and non-ripening of seeds, which is an ecophysiological factor of the heather absence south of Kurgan city.
Calluna vulgaris, transpiration, Trans-Urals, transpiration dynamics
1. Shi L., Liu H., Wang L., Peng R., He H., Liang B., Cao J. Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution, Science of The Total Environment, 2023, 168503. DOI: https://doi.org/10.1016/j.scitotenv.2023.168503.
2. Grau-Andrés R., Matt Davies G., Waldron S., Scott E. M., Gray A. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems, Journal of Environmental Management. 2019; 231: 1004-1011. DOI: https://doi.org/10.1016/j.jenvman.2018.10.113.
3. Log T. Modeling drying of degenerated Calluna vulgaris for wildfire and prescribed burning risk assessment. Forests. 2020; 11: 759-765. DOI: https://doi.org/10.3390/f11070759.
4. Schellenberg J., Bergmeier E. The Calluna life cycle concept revisited: implications for heathland management. BiodiversConserv. 2022; 31: 119-141. DOI: https://doi.org/10.1007/s10531-021-02325-1.
5. Gen S., Stanley M.J. Whole leaf comparative study of stomatal conductance models. Frontiers in Plant Science. 2022; 13. DOI: https://doi.org/10.3389/fpls.2022.766975
6. Hagedorn F., Dawes M.A., Bubnov M.O., Devi N.M., Grigoriev A.A., Mazepa V.S., Shiyatov S.G., Moiseev P.A., Nagimov Z.Y. Latitudinal decline in stand biomass and productivity at the elevational treeline in the Ural mountains despite a common thermal growth limit. Journal of Biogeography. 2020; 47(8): 1827-1842. DOI: https://doi.org/10.1111/jbi.13867.
7. Potter C., Changes in vegetation cover of the arctic national wildlife refuge estimated from modis greenness trends. Earth Interact. 2019; 23: 1-18. DOI: https://doi.org/10.1175/EI-D-18-0018.1.
8. Napier J.D, De Lafontaine G, Hu F.S. Exploring genomic variation associated with drought stress in Picea mariana populations. Ecol Evol. 2020; 10(17): 9271-9282. DOI: https://doi.org/10.1002/ece3.6614
9. Baysholanov S.S., Pavlova V.N., Zhakieva A.R., Chernov D.A., Gabbasova M.S. Agroklimaticheskie resursy Severnogo Kazahstana. Gidrometeorologicheskie issledovaniya i prognozy. 2018; 1 (367): 168-184. Rezhim dostupa: https://elibrary.ru/item.asp?id=35138146
10. Eynaud F., Verdin F., Mary Y., Beaudouin C., López-Romero E., Penaud A., Colin Ch., Culioli C. Holocene climate dynamics on the European scale: Insights from a coastal archaeological record from the temperate Bay of Biscay (SW France). Quaternary International. 2022; 613: 46-60. DOI: https://doi.org/10.1016/j.quaint.2021.09.018.
11. Liu W., Wang G., Yu M., Chen H., Jiang Y. Multimodel future projections of the regional vegetation-climate system over East Asia: Comparison between two ensemble approaches. Journal of Geophysical Research: Atmospheres. 2020; 125: e2019JD031967. DOI: https://doi.org/10.1029/2019JD031967
12. Geografiya Kurganskoy oblasti: kraevedcheskoe posobie / I.V. Abrosimova, T.G. Akimova, O.V. Arshevskaya [i dr.]; Ministerstvo nauki i vysshego obrazovaniya Rossiyskoy Federacii, Kurganskiy gosudarstvennyy universitet, Zaural'skoe otdelenie Russkogo geograficheskogo obschestva; [red.kollegiya: N.I. Naumenko, O.G. Zav'yalova, T.G. Akimova]. Izdatel'stvo Kurganskogo gosudarstvennogo universiteta. 2019; 275. Rezhim dostupa: https://elibrary.ru/item.asp?id=41555104
13. Ebel' A.L., Ebel' T.V., Zykova E.Yu., Mihaylova S.I. Floristicheskie nahodki v Zapadnoy Sibiri i na Yuzhnom Urale. Turczaninowia. 2022; №3: 207-216. Rezhim dostupa: https://elibrary.ru/item.asp?id=49541636
14. Cherepanova O.; Petrova I.; Sannikov S.; Mishchihina Y. Diagnostics and description of a new subspecies of Calluna vulgaris (L.) Hull from Western Siberia. Horticulturae. 2023; 9: 386-397. DOI: https://doi.org/10.3390/horticulturae9030386
15. Tret'yakova A.S. Redkie lesnye rastitel'nye soobschestva nacional'nogo parka «Pripyshminskie bory» (Sverdlovskaya oblast'). Ekobioteh, 2020; 3(3): S. 370-378. Rezhim dostupa: https://elibrary.ru/item.asp?id=44280506
16. Vlasenko M.V., Trubakova K.Yu. Vodnyy rezhim vidov semeystva Poaceae v usloviyah zasuhi. AVU. 2019; 11 (190): 2-8. Rezhim dostupa: https://elibrary.ru/item.asp?id=41376259
17. Zhu Y., Cheng Z, Feng K., Chen Z. Cao Ch., Huang J., Ye H., Gao Y. Influencing factors for transpiration rate: a numerical simulation of an individual leaf system. Thermal Science and Engineering Progress. 2022; 27: 101-110. DOI: https://doi.org/10.1016/j.tsep.2021.101110.
18. Kochubey A.A. Izuchenie vliyaniya dinamiki vlazhnosti lesnogo napochvennogo pokrova na prorastanie semyan Pinus sylvestris L. s pomosch'yu eksperimental'nogo "lizimetricheskogo" metoda. Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. 2023; 242: 102-114. Rezhim dostupa: https://elibrary.ru/item.asp?id=50504398
19. Sannikov S.N., Sannikova N.S., Petrova I.V. et al. The forecast of fire impact on Pinus sylvestris renewal in southwestern Siberia. J. For. Res. 2021; 32: 1911-1919. DOI: https://doi.org/10.1007/s11676-020-01260-1
20. Nalevanková P, Sitková Z, Kučera J, Střelcová K. Impact of water deficit on seasonal and diurnal dynamics of European beech transpiration and time-lag effect between stand transpiration and environmental drivers. Water. 2020; 12(12): 3437. DOI: https://doi.org/10.3390/w12123437
21. Arrowsmith K. Reynolds C., Briggs V.A., Heather M., Berry J. Community context mediates effects of pollinator loss on seed production. Ecosphere. 2023; 14(6): e4569. DOI: https://doi.org/10.1002/ecs2.4569
22. Wu X, Zhang R, Bento V.A, Leng S, Qi J, Zeng J, Wang Q. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sensing. 2022; 14(18): 4658. DOI: https://doi.org/10.3390/rs14184658.