Heartwood moisture conductivity of standing pine damaged by running crown and strong surface wildfire
Abstract and keywords
Abstract (English):
The forest fire has an effect on the tree trunk. Of the total number of fires in the forest-steppe zone of Russia, strong grass-roots fires prevail. As a result of this type of fire, the undergrowth burns out, which contributes to the most prolonged exposure to high temperature on the lumpy, economically valuable part of the trunk. The effect of high temperature affects the structure of the anatomical elements of wood, its integrity is violated. In the standing timber of the Scots pine (Pinus sylvestris L.) destructive processes occur after fire damage, which have a significant effect on its physico-mechanical properties and are accompanied by intensive tar formation. One of the primary processes in wood processing technology is its dehydration, as a result of which wood is transformed from a natural material into a technological raw material. Therefore, the application of existing technological drying modes to wood damaged by fire is impractical. It is impossible to carry out the processes of dehydration or humidification of wood without information about the value of its moisture conductivity. The moisture conductivity of wood is determined by the moisture conductivity coefficient. The value of the moisture conductivity coefficient of samples of fire-damaged and undamaged P. sylvestris heartwood extracted from the stemwood was determined by the method of stationary moisture flow in the radial and tangential directions. In comparison with the intact Scots pine wood, wood damaged by fire has an inverse dependence of the intensity of the moisture current – in the tangential direction it is higher than in the radial direction. There is a general decrease in the moisture conductivity coefficient of pine wood: in the radial direction – by 40.2 ± 1.58% (p < 0.05), in the tangential direction – by 14.5 ± 0.92% (p < 0.05) compared with intact wood. Patterns of changes in the value of the heartwood coefficient of moisture conductivity in standing pine, damaged by fire, will allow to adjust the existing drying modes and improve the quality of the dried wood and the efficiency of the softwood kiln drying technology.

Keywords:
moisture conductivity coefficient, wood moisture, standing timber, softwood, heartwood, Pinus sylvestris L., method of stationary moisture current, diffuse moisture current, wildfire, drying, running crown fire, surface fire
Text
Publication text (PDF): Read Download
References

1. Furyaev, I. V. Pozharoustoychivost' nasazhdeniy yuzhno-taezhnyh lesov Zapadno- Sibirskoy ravniny i sredne-Sibirskogo ploskogor'ya // Sciences of Europe. 2021; 64-3: 26-29. URL: https://elibrary.ru/MQJAAZ.

2. Snegireva, S. N. Vlagopogloschenie zabolonnoy drevesiny sosny, povrezhdennoy pozharom / S. N. Snegireva, A. D. Platonov, E. V. Kantieva // Podgotovka kadrov v usloviyah perehoda na innovacionnyy put' razvitiya lesnogo hozyaystva. - Voronezh, 2021: 264-267. - URL: https://elibrary.ru/FXVJCN.

3. Snegireva, S.N. Formirovanie pozdney drevesiny sosny, povrezhdennoy pozharom / Snegireva S.N., Platonov A.D., Keyan N.G. // Razrabotka energoresursosberegayuschih i ekologicheski bezopasnyh tehnologiy lesopromyshlennogo kompleksa. Voronezh, 2022: 81-84. URL: https://elibrary.ru/gawptt.

4. Kur'yanova, T.K. i dr. Dlitel'nost' sohraneniya prochnostnyh svoystv drevesiny, povrezhdennoy pozharom // Stroenie, svoystva i kachestvo drevesiny-2014. M., 2014: 28-29. URL: https://www.elibrary.ru/trxegz.

5. Platonov, A. D. Issledovanie vlagoprovodnosti drevesiny posle himicheskoy obrabotki / A. D. Platonov, T. K. Kur'yanova // Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoy vestnik. 2005; 2: 56-63. URL: https://www.elibrary.ru/PGFZUN.

6. Sotnikova, M. A. Razrabotka metodov i processov obezvozhivaniya drevesiny i drevesnyh othodov / M. A. Sotnikova, V. A. Sokolova // Aktual'nye problemy razvitiya lesnogo kompleksa. Vologda, 2019: 178-181. URL: https://www.elibrary.ru/IRRYUD.

7. Opredelenie minimal'noy vysoty istochnika vybrosov iz kamery pri sushke drevesiny buka / Yu.S. Mihaylova [i dr.] // Lesotehnicheskiy zhurnal. 2019; 9 (36): 117-125. https://elibrary.ru/SCFLPI.

8. Platonov, A.D. Struktura i fiziko-mehanicheskie svoystva himicheski obrabotannoy drevesiny trudnosohnuschih porod. Voronezh, 2005: 125. https://elibrary.ru/qnjhbd.

9. Zhan, T. Moisture diffusion properties of graded hierarchical structure of bamboo: Longitudinal and radial variations / T. Zhan, F. Sun, C. Lyu et al. // Construction and Building Materials. 2020; 259: 119641. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119641.

10. Afshari, Z. Moisture Transport in Laminated Wood and Bamboo Composites Bonded with Thin Adhesive Layers - a Numerical Study / Z. Afshari, S. Malek // SSRN Electronic Journal. - 2022. - DOI: https://doi.org/10.2139/ssrn.4026076.

11. A.A. Chiniforusha, H.Valipourb, A.Akbarnezhada. Water vapor diffusivity of engineered wood: Effect of temperature and moisture content. Construction and Building Materials. Volume 224, 10 November 2019, Pages 1040-1055.

12. A K.Hofstetter. Somprehensive model for transient moisture transport in wood below the fiber saturation point: Physical background, implementation and experimental validation. International Journal of Thermal Sciences Volume 50, Issue 10, October 2011, pages 1861-1866

13. J. Eitelberger, K. Hofstetter. Prediction of transport properties of wood below the fiber saturation point - A multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient. Composites Science and Technology Volume 71, Issue 2, 17 January 2011, Pages 145-151.

14. Eksperimental'noe opredelenie vlagoprovodnosti obrazcov iz sosny v prodol'nom napravlenii pri konvektivnoy sushke / Yu. A. Gosteev, Yu. G. Korobeynikov, A. V. Fedorov, V. M. Fomin / Prikladnaya meha-nika i tehnicheskaya fizika. 2003; 44 (3): 117-123. URL: https://www.elibrary.ru/ooaqih.

15. Opredelenie koefficienta vlagoprovodnosti pri nizkotemperaturnoy sushke drevesiny / I.V. Sapozhnikov [i dr.] // Lesnoy vestnik. Forestry Bulletin. - 2016. - № 4. - S. 34-39. - URL: https://www.elibrary.ru/wrjtcf.

16. Rudak, A.G. Issledovanie vlagoprovodnosti drevesiny sosny v razlichnyh strukturnyh napravle-niyah / A.G. Rudak, B.V. Snopkov / Trudy BGTU. № 2. Lesnaya i derevoobrabatyvayuschaya promyshlennost'.- 2010. - № 2. - S. 180-183. https://www.elibrary.ru/vbfmyl.

17. Gorohovskiy, A. G. Konvektivnaya sushka pilomaterialov na osnove upravlyaemogo vlagoobmena / A. G. Gorohovskiy, E. E. Shishkina, A. S. Agafonov // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. - 2022. - № 1(385). - S. 166-172. - DOIhttps://doi.org/10.37482/0536-1036-2022-1-166-172. https://elibrary.ru/EUPCCA.

18. Zaripov, Sh. G. O vlagoobmennyh processah pri konvektivnoy sushke v kamerah periodicheskogo deystviya listvennichnyh pilomaterialov / Sh. G. Zaripov, V. A. Kornienko // Hvoynye boreal'noy zony. - 2021. - T. 39, № 1. - S. 60-65. https://elibrary.ru/mjhhvp.

19. Vlagoprovodnost' drevesiny yabloni / A. D. Platonov, S. I. Voloshin, S. N. Snegireva [i dr.] // Le-sotehnicheskiy zhurnal. 2018; 8(32): 181-187. https://elibrary.ru/vogopo.

20. Platonov, A.D. Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia / A.D. Platonov, S.N. Snegireva, M. V. Drapalyuk et al. // Forests. 2022; 13 (11): 1758. - DOI: https://doi.org/10.3390/f13111758.

21. Skuratov, N. V. Paropronicaemost' i vlagoprovodnost' termicheski modificirovannoy drevesi-ny yasenya / N. V. Skuratov, D. V. Usov, I. G. Sergeev. Krasnoyarsk: OOO "Nauchno-innovacionnyy centr", 2022: 113-115. https://elibrary.ru/njkcdj.

22. Vlagoprovodnost' drevesiny sosny, povrezhdennoy pozharom, pri atmosfernoy sushke / A. D. Platonov, S. N. Snegireva, E. V. Kantieva [i dr.] // Perspektivnye resursosberegayuschie tehnologii razvitiya lesopromyshlennogo kompleksa. Voronezh, 2023: 126-129. - https://doi.org/10.58168/R-STDTIC2023_126-129. https://elibrary.ru/DEFNQF.

23. Dinamika napochvennogo pokrova v biotopah sosnovyh lesov pri fragmentacii, vyzvannoy pozharami, v usloviyah lesostepnoy zony / V. T. Popova, A. A. Popova, A. K. Kondrat'eva [i dr.] // Lesotehnicheskiy zhurnal. - 2023. - T. 13, № 1(49). - S. 37-53. - DOIhttps://doi.org/10.34220/issn.2222-7962/2023.1/3. - https://elibrary.ru/IJJDFW.

24. Prognoznaya model' poslepozharnogo lesovosstanovleniya v Irkutskoy oblasti / O. I. Grigor'eva, O. I. Grin'ko, I. V. Grigor'ev [i dr.] // Lesotehnicheskiy zhurnal. - 2023. - T. 13, № 1(49). - S. 85-98. - DOIhttps://doi.org/10.34220/issn.2222-7962/2023.1/6. - https://elibrary.ru/TLMULF.

25. Kotelnikov, P. Application of the Benford law in assessment of wildfire data accuracy / P. Kotelnikov, A. Martynyuk // Forestry Engineering Journal. - 2018. - Vol. 8. - № 1. - P. 30-36. - DOI: https://doi.org/10.12737/article_5ab0dfbb946859.24647128.

26. Snegireva, S. Variability of the hardness of pine wood damaged by strong grassroots and rampant riding fire / S. Snegireva, A. Platonov, A. Kiseleva, E. Kantieva // Forestry Engineering Journal. - 2022. - Vol. 11. - № 4. - P. 79-87. - DOI: https://doi.org/10.34220/issn.2222-7962/2021.4/7.

27. Tyukavina, O. Heating capability of postpyrogen pine wood / O. Tyukavina, A. Gudina // Forestry Engineering Journal. - 2020. - Vol. 10. - № 2. - P. 188-195. - DOI: https://doi.org/10.34220/issn.2222-7962/2020.2/19.

28. Kendell, A. Wildfires: Introduction, Impact, Policy, and Planning / A. Kendell, A. Galloway, C. Milligan // The Path of Flames: Understanding and Responding to Fatal Wildfires. - Boca Raton : CRC Press, 2023. - P. 3-18. - DOI: https://doi.org//10.4324/9781003168010-2.

29. Erni, S. Stand Age Influence on Potential Wildfire Ignition and Spread in the Boreal Forest of Northeastern Canada / S. Erni, D. Arseneault, M.A. Parisien // Ecosystems. - 2018. - Vol. 21. - № 7. - P. 1471-1486. - DOI: https://doi.org/10.1007/s10021-018-0235-3.

30. Bryukhanov, A. V. Wildfire Impact on the Main Tree Species of the Near-Yenisei Siberia / A. V. Bryukhanov, A. V. Panov, E.I. Ponomarev, N. V. Sidenko // Izvestiya - Atmospheric and Ocean Physics. - 2018. - Vol. 54. - № 11. - P. 1525-1533. - DOI: https://doi.org/10.1134/S0001433818110026.

31. Goreshnev, M.A. Determination of the Coefficient of Thermal and Moisture Conductivity of Wood by the Transient Moisture Current Method / M.A. Goreshnev, F.G. Sekisov, O. V. Smerdov // Journal of Engineering Physics and Thermophysics. - 2018. - Vol. 91. - № 3. - P. 827-830. - DOI: https://doi.org/10.1007/s10891-018-1805-0.


Login or Create
* Forgot password?