Water absorption and swelling of Betula pendula ROTH wood modified with oligomers from by-products of polybutadiene production
Abstract and keywords
Abstract (English):
Currently, natural wood and products based on it are in high demand. The technology of impregnation of low-value wood species on the example of B. pendula ROTH with an oligomeric material obtained from rubber production waste has been studied. Oligomers with a styrene content of 10 and 90% were obtained. In the first case, the low molecular weight copolymer had a molecular weight of 1100-1300, and in the second - 1700-2000. Impregnation of B. pendula ROTH wood was carried out in a solution of the obtained oligomer in toluene. In order to speed up the drying process of the protective coating and increase its strength, NF-1 siccative was introduced into the impregnation composition in an amount of 4-5%. The impregnation was carried out at temperatures of 60 and 120 ˚C, followed by heat treatment at temperatures of 100 and 160 ˚C. In the work, using the theory of experimental planning, a regression model was created that made it possible to describe the effects of a number of technological indicators on increasing the water and moisture resistance of modified wood. Verification of the coefficients of the models for significance was carried out using the Student's criterion. The obtained regression models make it possible to predict the characteristics of water resistance of birch wood modified due to its impregnation with a low-molecular copolymer containing styrene at specified values of technological parameters - the styrene content in the impregnating composition, the values of the impregnation temperature and heat treatment. It is shown that in order to increase the efficiency of the impregnation and heat treatment process, it is necessary to adhere to the minimum values of the considered temperature intervals, and the styrene content in the applied oligomeric product should be ~ 90% by weight. Modifying treatment of wood with an oligomer from by-products of polybutadiene production makes it possible to improve its water resistance. The use of the proposed impregnating compounds contributes to the disposal of waste and by-products of polybutadiene production.

Keywords:
oligomer, wood, Betula pendula ROTH, modification, regression model, water absorption, swelling
Text
Publication text (PDF): Read Download
References

1. Nikulina N., Vostrikova G., Dmitrenkov A., Nikulin S. Modification of low-molecular copolymer from by-products of butadiene rubber by secondary expanded polystyrene // ChemChemTech. 2019; 62 (1): 114-119. DOI: http://doi.org/10.6060/ivkkt.20196201.5768.

2. Mills N., Jenkins M., Kukureka S. Plastics: microstructure and engineering applications. - Butterworth-Heinemann, 2020. DOI: http://doi.org/13960/t78t3r22k.

3. Hagiopol C. Natural polyphenols applications // Natural polyphenols from wood: tannin and lignin-an indus-trial perspective. 2021; 8: 259-314. DOI: https://doi.org/10.1016/B978-0-12-822205-8.00004-9.

4. Li P. et al. Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression // Journal of Materials Research and Technology. - 2020. - T. 9. - №. 1. - S. 1043-1053. DOI: https://doi.org/10.1016/j.jmrt.2019.10.035.

5. Kurkowiak K., Emmerich L., Militz H. Wood chemical modification based on bio-based polycarboxylic acid and polyols-status quo and future perspectives //Wood Material Science & Engineering. - 2022. - T. 17. - №. 6. - S. 1040-1054. DOI: https://doi.org/10.1080/17480272.2021.1925961.

6. Sangregorio A. et al. Humin based resin for wood modification and property improvement //Green Chemistry. 2020; 22 (9): 2786-2798. DOI: http://doi.org/10.1039/C9GC03620B.

7. Wang J., Zhang D., Chu F. Wood-Derived Functional Polymeric Materials // Advanced Materials. - 2021. - Vol. 33 (28), 2001135. DOI: http://doi.org/10.1002/adma.202001135

8. Dong Y. et al. Environmentally benign wood modifications: a review // ACS Sustainable Chemistry & Engineer-ing. 2020; 8 (9): 3532-3540. https://doi.org/10.1021/acsmacrolett.2c00427.

9. Lykidis C., Kotrotsiou K., Tsichlakis A. Reducing set-recovery of compressively densified poplar wood by im-pregnation-modification with melamine-formaldehyde resin // Wood Material Science & Engineering. 2020; 15 (5): 269-277. https://doi.org/10.1080/17480272.2019.1594365.

10. Lin, W., Huang, Y., Li, J. et al. Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane // Cellulose. 2018. Vol. 25: 7341. https://doi.org/10.1007/s10570-018-2074-y.

11. Čermák P. et al. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde res-in impregnated beech wood // Holzforschung. 2022; 76 (5): 437-450. https://doi.org/10.1515/hf-2021-0164.

12. Podkościelna B. et al. Interactions between biofiller-modified polymeric composites and wood-rotting fungi in terms of their biotechnological applications // Industrial Crops and Products. 2022; 186: 115125. DOI: http://doi.org/https://doi.org/10.1016/j.indcrop.2022.115125.

13. Baar J. et al. Effect of hemp oil impregnation and thermal modification on European beech wood properties // European Journal of Wood and Wood Products. 2021: 79 (1): 161-175. https://doi.org/10.1007/s00107-020-01615-9.

14. Shen X. et al. Effect of furfurylation on hierarchical porous structure of poplar wood // Polymers. 2020; 13 (1): 32. DOI: https://doi.org/10.3390/polym13010032.

15. Srikanthan V. et al. Wood-mimicking bio-based biporous polymeric materials with anisotropic tubular macropores // Polymers. 2021; 13 (16): 2692. DOI: http://doi.org/https://doi.org/10.3390/polym13162692.

16. Popescu C. M., Pfriem A. Treatments and modification to improve the reaction to fire of wood and wood based products-An overview // Fire and Materials. 2020; 44 (1): 100-111. DOI: https://doi.org/10.1002/fam.2779.

17. Holy S., Temiz A., Köse Demirel G., Aslan M., Mohamad Amini M.H. Physical properties, thermal and fungal resistance of Scots pine wood treated with nano-clay and several metal-oxides nanoparticles // Wood Material Science and Engineering. 2020: 16 (1): 1-10. DOI: https://doi.org/10.1080/17480272.2020.1836023.

18. Candelier K., Atli A., Alteyrac J. Termite and decay resistance of bioplast-spruce green wood-plastic composites // European Journal of Wood and Wood Products. 2019; 77: 157-169. DOI: https://doi.org/10.1007/s00107-018-1368-y.

19. Impregnation of wood with waste engine oil to increase water-and bio-resistance / L. Belchinskaya, K. V. Zhuzhukin, T. Ishchenko, A. Platonov. Forests. 2021; 12 (12): 1762. DOI: https://doi.org/10.3390/f12121762.

20. Tomak E. D. Surface wettability of boron and oil-treated wood // Cerne. 2022; 28. DOI: https://doi.org/10.1590/01047760202228013058.

21. Yang H. et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric ma-terials // Green Chemistry. 2020; 22 (7): 2129-2161. DOI: http://doi.org/10.1039/D0GC00449A

22. Nguyen T. T, Xiao Z., Che W., Trinh H. M. and Xie Y. Effects of modification with a combination of styrene-acrylic copolymer dispersion and sodium silicate on the mechanical properties of wood // J. Wood Sci. 2019; 65: 1. DOI: https://doi.org/10.1186/s10086-019-1783-7.

23. Qiu Z., Xiao Z., Gao L., Li J., Wang H., Wang Y., Xie Y. Transparent wood bearing a shielding effect to infra-red heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles // Composites Science and Technology. 2019; 172 (1): 43-48. DOI: https://doi.org/10.1016/j.compscitech.2019.01.005.

24. Shishlov O. F., Baulina N. S, Glukhikh V. V., El’tsov O. S., Shafran Yu. M., Buryndin V. G., Stoyanov O. V. Synthesis of cardanol-containing resols for producing phenolic films: protective coatings for wood composites // Poly-mer Science. Series D. 2021; 14: 328-334. DOI: http://doi.org/10.1134/S1995421221030308.

25. Razrabotka modificiruyuschih sostavov drevesiny na osnove pobochnyh produktov proizvodstva po-libutadiena i metilmetakrilata / N. S. Nikulina, A. I. Dmitrenkov, E. V. Tomina [i dr.] // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. - 2023. - № 245. - S. 318-330. - DOI http://doi.org/10.21266/2079-4304.2023.245.318-330. - Rezhim dostupa: https://elibrary.ru/negrlk.

26. Tomina, E. V. Ispol'zovanie nanorazmernogo ZnO v sostavah dlya zaschitnoy obrabotki drevesiny / E. V. Tomina, A. I. Dmitrenkov, K. V. Zhuzhukin // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. - 2022. - № 4(388). - S. 173-184. - DOI: http://doi.org/10.37482/0536-1036-2022-4-173-184. - Rezhim dostupa: https://elibrary.ru/fcfeof.


Login or Create
* Forgot password?