Study of the structure and mechanical properties of annual rings of pedunculate oak (Quercus robur) using nanoindentation and scratch test methods
Abstract and keywords
Abstract (English):
Optical methods and optical properties are usually used to research the structure of wood and its ring structure. However, these properties are not directly related to its mechanical and other physical characteristics. To study them, methods of x-ray densitometry, synchrotron radiation, nuclear magnetic resonance, etc., which are not very common in wood science, are used. These methods are quite labor-intensive and require expensive equipment. In this regard, there is a need to develop simple and convenient means and methods for studying the micromechanical properties of wood. The main goal of the work is to develop such an approach using nanoindentation and digital scratching of a cross section of wood and to identify its potential in the further development of dendrochronology and related disciplines. Using the NI method, radial dependences of hardness H and Young's modulus E were obtained for eleven consecutive annual pedunculate oak (Quercus robur L.) wood rings for 3 different loads Pmax = 2, 100 and 500 mN. The values of H in the range from 70 to 340 MPa and Young's modulus E in the range from 2 to 10 GPa were determined for the corresponding loads and early (EW) and late wood (LW). Using the scratch test method, profiles of the normal force Fn and the corresponding hardness HS (in the range from 53 to 225 MPa) were obtained for the period 2007-2020. According to both methods, the widths of annual rings were determined; the discrepancy between the values and the optical method was < 3 %.

Keywords:
nanoindentirovanie, skretch-test, godovye kol'ca, struktura i mehanicheskie svoystva drevesiny, Quercus robur L., tverdost', modul' Yunga
Text
Publication text (PDF): Read Download
References

1. Frank D., Fang K., Fonti P. Dendrochronology: Fundamentals and Innovations. In Stable Isotopes in Tree Rings, Siegwolf R. T. W., Brooks J. R., Roden J., Saurer M. (eds.). Springer: Cham. 2022. 8: 21-59. DOI: https://doi.org/10.1007/978-3-030-92698-4_2.

2. Rubino D. L., Baas C. Dating Buildings and Landscapes with Tree-Ring Analysis, 1st eds.. Routledge: Lon-don. 2019. 302 p. DOI: https://doi.org/10.4324/9781315145679.

3. Bernabei M., Martinelli N., Cherubini P. Tree-Ring Analysis on Wooden Artifacts: What Can It Tell Us? In Nanotechnologies and Nanomaterials for Diagnostic, Conservation, and Restoration of Cultural Heritage, Lazzara G., Fakhrullin R. (eds.). Elsevier. 2019. 111-125. DOI: https://doi.org/10.1016/B978-0-12-813910-3.00006-9.

4. Ljungqvist F. C., Thejll P., Björklund J., Gunnarson B. E., Piermattei A., Rydval M., Seftigen K., Støve B., Büntgen U. Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia. 2020. 59: 125652. DOI: https://doi.org/10.1016/j.dendro.2019.125652.

5. Büntgen U., Arseneault D., Boucher E. Recognising bias in Common Era temperature reconstructions. Den-drochronologia. 2022. 74: 125982. DOI: https://doi.org/10.1016/j.dendro.2022.125982.

6. Dendroecology. Tree- Ring Analyses Applied to Ecological Studies. Amoroso M. M., Daniels L. D., Baker P. J., Camarero J. J. (eds.). Springer International Publishing AG. 2017. 231: 363 p. DOI: https://doi.org/10.1007/978-3-319-61669-8.

7. Domínguez-Delmás M. Seeing the forest for the trees: New approaches and challenges for dendroarchaeolo-gy in the 21st century. Dendrochronologia. 2020. 62: 125731. DOI: https://doi.org/10.1016/j.dendro.2020.125731.

8. Pearl J. K., Keck J. R., Tintor W., Siekacz L., Herrick H. M., Meko M. D., Pearson C. L. New frontiers in tree-ring research. The Holocene. 2020. 1-10. DOI: https://doi.org/10.1177/0959683620902230.

9. Asadulaev Z. M., Omarova O. K., Ramazanova Z. K. Vozrastnye i klimaticheskie osnovy izmenchivosti godichnyh kolec Taxus baccata v predgornom Dagestane. Lesotehnicheskiy zhurnal. 2018. 8(2): 22-36. DOI: https://doi.org/10.12737/article_5b24060a7008c9.83626510. Rezhim dostupa: https://www.elibrary.ru/xrubrz.

10. V'yuhina A. A., Gurskaya M. A. Intensivnost' otrazheniya sinego (blue intensity): dendroklimaticheskiy potencial sosny, proizrastayuschey na severe Fennoskandii // Zhurn. Sib. feder. un-ta. Biologiya. 2022. 15(2): 244-263. DOI: https://doi.org/10.17516/1997-1389-0385. Rezhim dostupa: https://www.elibrary.ru/xzzgdc.

11. Buckley B. M., Hansen K. G., Griffin K. L., Schmiege S., Oelkers R., D’Arrigo R. D., Stahle D. K., Davi N., Nguyen T. Q. T., Le C. N., Wilson R. J. S. Blue intensity from a tropical conifer’s annual rings for climate reconstruc-tion: An ecophysiological perspective. Dendrochronologia. 2018. 50: 10-22. DOI: https://doi.org/10.1016/j.dendro.2018.04.003.

12. Matulewski P., Buchwal A., Gärtner H., Jagodziński A. M., Cufar K. Altered growth with blue rings: compari-son of radial growth and wood anatomy between trampled and non- trampled scots pine roots. Dendrochronologia. 2022. 72(1-2): 125922. DOI: https://doi.org/10.1016/j.dendro.2022.125922.

13. Samusevich A., Lexa M., Vejpustková M., Altman J., Zeidler A. Comparison of methods for the demarca-tion between earlywood and latewood in tree rings of Norway spruce. Dendrochronologia. 2020. 60: 125686. DOI: https://doi.org/10.1016/j.dendro.2020.125686.

14. Moghaddam M. S., den Bulcke J. V., Wålinder M. E. P., Claesson P. M., Acker J. V., Swerin A. Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties. Holzforschung. 2017. 71(2): 119-128. DOI: https://doi.org/10.1515/hf-2015-0227.

15. Jacquin P., Longuetaud F., Leban J.-M., Mothe F. X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia. 2017. 42: 42-50. DOI: https://doi.org/10.1016/j.dendro.2017.01.004.

16. Alves E. E. N., Rodriguez D. R. O., Rocha P. A., Vergütz L., Junior L. S., Hesterberg D., Pessenda L. C. R., Tomazello-Filho M., Costa L. M. Synchrotron-based X-ray microscopy for assessing elements distribution and specia-tion in mangrove tree-rings. Results in Chemistry. 2021. 3: 100121. DOI: https://doi.org/10.1016/j.rechem.2021.100121.

17. Kang X., Kirui A., Widanage M. C. D., Mentink-Vigier F., Cosgrove D. J., Wang T. Lignin-polysaccharide in-teractions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 2019. 10: 347. DOI: https://doi.org/10.1038/s41467-018-08252-0.

18. Chen C., Kuang Y., Zhu S., Burgert I., Keplinger T., Gong A., Li T., Berglund L., Eichhorn S. J., Hu L.  Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 2020. 5: 642-666. DOI: https://doi.org/10.1038/s41578-020-0195-z.

19. Runova E. M., Garus I. A., Muhacheva A. N. Primenenie instrumental'nyh metodov pri ocenke sosto-yaniya stvolov Pinus sylvestris L. Lesotehnicheskiy zhurnal. 2020. 10(3): 72-85. DOI: https://doi.org/10.34220/issn.2222-7962/2020.3/8. Rezhim dostupa: https://www.elibrary.ru/mkwogv.

20. Golovin Yu. I. Nanoindentirovanie i ego vozmozhnosti. Moskva: Mashinostroenie, 2009. - 312 s. ISBN 978-5-94275-476-1. - Rezhim dostupa: https://www.elibrary.ru/raydmx.

21. Golovin Yu.I., Tyurin A.I., Aslanyan E.G., Pirozhkova T.S., Vasyukov V.M. Fiziko-mehanicheskie svoy-stva i mikromehanizmy lokal'nogo deformirovaniya materialov s razlichnoy zavisimost'yu tverdosti ot glu-biny otpechatka. Fizika tverdogo tela. 2017. 59(9): 1778-1786. DOI: https://doi.org/10.21883/0000000000. Re-zhim dostupa: https://elibrary.ru/item.asp?id=29973088.

22. Golovin Yu. I., Gusev A. A., Golovin D. Yu., Matveev S. M., Tyrin A. I., Samodurov A. A., Korenkov V. V., Vasyukova I. A., Yunask M. A. Multiscale wood micromechanics and size effects study via nanoindentation. Journal of Bioresources and Bioproducts. 2023. 8(3): 246-264. DOI: https://doi.org/10.1016/j.jobab.2023.04.002.

23. Golovin Yu.I., Tyurin A.I., Gusev A.A., Matveev S.M., Golovin D.Yu., Samodurov A.A., Vasyukova I.A., Yunak M.A., Kolesnikov E.A., Zaharova O.V. Lokal'nye mehanicheskie svoystva i kol'cevaya struktura dreve-siny, issledovannye metodom skaniruyuschego nanoindentirovaniya // Zhurnal tehnicheskoy fiziki. 2022. 92(4): 575-587. DOI: https://doi.org/10.21883/JTF.2022.04.52245.297-21. Rezhim dostupa: https://elibrary.ru/item.asp?id=48022954.

24. Vaganov E. A., Hughes M. K., Silkin P. P., Nesvetailo V. D. The Tunguska Event in 1908: Evidence from Tree-Ring Anatomy. Astrobiology. 2004. 4(3): 391-399. DOI: https://doi.org/10.1089/ast.2004.4.391.

25. Silkin P. P., Kirdyanov A. V., Krusic P. J., Ekimov M. V., Barinov V. V., Büntgen U. A new approach to measuring tree-ring density parameters. J. Sib. Fed. Univ. Biol. 2022. 15(4): 441-455. DOI: https://doi.org/10.17516/1997-1389-0397.


Login or Create
* Forgot password?