ON THE ISSUE OF PRACTICAL APPLICATION OF CLUSTER ANALYSIS ALGORITHMS
Abstract and keywords
Abstract (English):
Data in a broad sense refers to the factual material that provides information for the problem being studied and provides the basis for discussion, analysis and decision making. Cluster analysis is a procedure that, based on a given rule, combines objects or variables into groups. The work provides grouping of multidimensional data using such proximity measures as the sample correlation coefficient and its modulus, the cosine of the angle between vectors, and the Euclidean distance. Grouping is carried out by centers, by nearest neighbor and by selected standards. The program is written in the VS environment in C++.

Keywords:
cluster analysis, cluster, function of distances between vectors, dendrogram, matrix, measure of divergence, method of grouping multiple objects
Text
Publication text (PDF): Read Download
References

1. E.V. Gubler Primenenie neparametricheskih kriteriev statistiki v medikobiologicheskih issledovaniyah / E. V. Gubler, A. A. Genkin - L.: Medicina, 1973. - 144 s.

2. S.A. Ayvazyan, V.M. Buhshtaber, I.S. Enyukov, L.D. Meshalkin; pod red. S.A. Ayvazyana. Prikladnaya statistika. Klassifikaciya i snizhenie razmernosti - M.: Finansy i statistika, 2018. - 607 s., il.

3. Alan Agresti. An Introduction to Categorical Data Analysis. Description: Third edition. Hoboken, NJ: John Wiley & Sons, 2019. - 390 r.

4. Olenderfer M. S., Bleshfild R. K. Klasternyy analiz / Faktornyy, diskriminantnyy i klasternyy analiz: per. s angl.; Pod. red. I. S. Enyukova. - M.: Finansy i statistika, 2017. - 215 s.

Login or Create
* Forgot password?