Russian Federation
Russian Federation
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
In recent decades, organic farming, which does not use artificial chemical fertilizers and pesticides, has become increasingly popular in the world. Since ancient times, seaweed has been used as a plant growth stimulant to produce high-quality environmentally friendly products. At the same time, their influence on tree crops has not yet been sufficiently studied. The article examines the effect of Seaweed Seychelles Liquid®™ microfertilizers based on algae from the Seychelles on the growth and development of downy birch 15-1, propagated in vitro. The objects of study were explants at the multiplication stage and plants transferred into pots for growing in greenhouse conditions. Microfertilizers at a concentration of 10, 15, 20, 25 % vol. were added to the woody plant medium (WPM) for the cultivation of woody plants, supplemented with growth regulators 300 µg/l benzylamino-purine (BAP) and 200 µg/l indolyl-3-acetic acid (IAA). The manufacturer's recommended concentration 20% vol. was used when transferring to non-sterile conditions. Plants were cultivated under controlled conditions in in vitro laboratory and greenhouse for two weeks and two months, respectively, after which changes in morphometric parameters were recorded. The results obtained indicate the stimulating effect of organic fertilizer when using concentrations of 20 and 25% vol. on birch microclones in vitro. More significant stimulation was observed for potted plants, where the growth of experimental objects was 22% higher than control plants at the end of the experiment. The results of the experiments allow us to recommend organic fertilizers from seaweed to stimulate growth processes in woody plants when using concentrations of at least 20% vol. when cultivated in pots.
seaweed, organic fertilizers, woody plants, Betula pubescens, in vitro, clonal micropropagation, potted plants, growth processes
1. Ghareeb R. Y., Shams El-Din N. G. E. D., Maghraby D. M. E., Ibrahim D. S., Abdel-Megeed A., Abdelsalam N. R. Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Scientific reports. 2022;12(1):3841. https://doi.org/10.1038/s41598-022-06600-1.
2. Farghali M., Mohamed I. M. A., Osman A.I., Rooney D. W. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environ Chem Lett. 2023;21:97. https://doi.org/10.1007/s10311-022-01520-y.
3. Grammenou A., Petropoulos S. A., Thalassinos G., Rinklebe J., Shaheen S. M., Antoniadis V. Biostimulants in the Soil-Plant Interface: Agro-environmental Implications-A Review. Earth Syst Environ. 2023;7:583. https://doi.org/10.1007/s41748-023-00349-x.
4. Klochkova T. A., Klimova A. V., Klochkova N. G. Perspektivy ispol'zovaniya kamchatskih laminarievyh vodorosley v regional'nom rastenievodstve. Vestnik Kamchatskogo gosudarstvennogo tehnicheskogo universiteta. 2019;48: 90. Rezhim dostupa: https://cyberleninka.ru/article/n/perspektivy-ispolzovaniya-kamchatskih-....
5. Ren C. G., Liu Z. Y., Wang X. L., Qin S. The seaweed holobiont: from microecology to biotechnological applications. Microbial Biotechnology. 2022;15(3):738. DOI: https://doi.org/10.1111/1751-7915.14014.
6. Yalçın S., Şükran Okudan E., Karakaş Ö., Önem A. N., Sözgen Başkan K. Identification and quantification of some phytohormones in seaweeds using UPLC-MS/MS. Journal of Liquid Chromatography & Related Technologies. 2019;42(15-16):475. DOI: https://doi.org/10.1080/10826076.2019.1625374.
7. Agarwal P. K., Dangariya M., Agarwal P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research. 2021;58:102363. DOI: https://doi.org/10.1016/j.algal.2021.102363.
8. Parab A., Shankhadarwar S. Growth enhancement of agricultural crops using seaweed liquid fertilizer. Plant Science Today. 2022;9(2):322. DOI: https://doi.org/10.14719/pst.1439.
9. Esserti S., Faize M., Rifai L. A., Smaili A., Belfaiza M., Faize L., Alburquerque N., Burgos L., Koussa T., Makroum K. Media derived from brown seaweeds Cystoseira myriophylloides and Fucus spiralis for in vitro plant tissue culture. Plant Cell, Tissue and Organ Culture (PCTOC). 2017;128: 437. DOI: https://doi.org/10.1007/s11240-016-1121-3.
10. Sumangala K., Srikrishnah S., Sutharsan S. Roses Growth and Flowering Responding to Concentration and Frequency of Seaweed (Sargassum crassifolium L.) Liquid Extract Application. Current agriculture research journal. 2019;7(2): 236. DOI: http://dx.doi.org/10.12944/CARJ.7.2.11.
11. Pascual P. R. L., Carabio D. E., Abello N. F. H., Remedios E. A., Pascual V. U. Enhanced assimilation rate due to seaweed biostimulant improves growth and yield of rice bean (Vigna umbellata). Agronomy research. 2021;19(4):1863. DOI: https://doi.org/10.15159/AR.21.106.
12. Dookie M., Ali O., Ramsubhag A., Jayaraman J. Flowering gene regulation in tomato plants treated with brown seaweed extracts. Scientia Horticulturae. 2021;276:109715. DOI: https://doi.org/10.1016/j.scienta.2020.109715.
13. Loconsole D, Cristiano G, De Lucia B. Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract. Horticulturae. 2022;8(9):806. DOI: https://doi.org/10.3390/horticulturae8090806.
14. Ali O., Ramsubhag A., Jayaraman J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants. 2021;10(3):531. DOI: https://doi.org/10.3390/plants10030531.
15. Mukherjee A., Patel J.S. Seaweed extract: biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Technol. 2020;17:553. DOI: https://doi.org/10.1007/s13762-019-02442-z.
16. Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Marine Drugs. 2023; 21(1):23. https://doi.org/10.3390/md21010023.
17. Deolu-Ajayi A. O., Van der Meer I. M., Van der Werf A., Karlova R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant, Cell & Environment. 2022;45(9):2537. DOI: https://doi.org/10.1111/pce.14391.
18. Do Rosário Rosa V., Dos Santos A. L. F., da Silva A. A., Sab M. P. V., Germino G. H., Cardoso F. B., de Almeida Silva M. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant Physiology and Biochemistry. 2021;158:228. DOI: https://doi.org/10.1016/j.plaphy.2020.11.008.
19. Grodetskaya TA, Evlakov PM, Fedorova OA, Mikhin VI, Zakharova OV, Kolesnikov EA, Evtushenko NA, Gusev AA. Influence of Copper Oxide Nanoparticles on Gene Expression of Birch Clones In Vitro under Stress Caused by Phytopathogens. Nanomaterials. 2022;12(5):864. https://doi.org/10.3390/nano12050864.
20. Tepper E.Z., Shil'nikova V.K., Pereverzeva G.I. Praktikum po mikrobiologii. M.: Drofa, 2014, 255 s. Rezhim dostupa: https://djvu.online/file/MLDLeplmwueOH.