INTEGRATING THE CALIBRE SOFTWARE PRODUCT INTO THE CADENCE VIRTUOSO ENVIRONMENT AND INCREASING THE INTELLIGENT PROPERTIES OF CAD IC DESIGN
Abstract and keywords
Abstract (English):
The article discusses the technology for integrating Caliber into the Cadence Virtuoso environment and describes the impact of this integration on the productivity of engineers. The possibility of ensuring optimal interaction between developers and increasing the overall efficiency of the design team is considered, leading to end-to-end design optimization. The integration of Caliber and Cadence Virtuoso represents an important step in Electronic Design Development (EDA) and can solve a number of problems while improving the efficiency of the verification and analysis process. Here are a few aspects that demonstrate the need and benefits of such integration, data interoperability, ensuring that information received from Virtuoso can be used correctly and efficiently in Caliber and vice versa, automating the data transfer process and performing verification, speeding up all development cycles, verification can carry out, even in the early stages of design, smoother interaction between different teams using Virtuoso and Caliber. In the second part of the article, physical verification and extraction of the project is carried out using the graphical interface of the Mentor Graphics Caliber CAD system, where the topology is checked for compliance with the CTO (DRC check). For the DRC check of a project, check is performed using the Caliber application. Using Caliber in Cadence Virtuoso allows for more accurate verification of designed electronic circuits and microchips. Caliber provides deeper analysis of physical parameters such as layer compatibility, electrical and geometric rules, leading to the identification of potential problems earlier in development.

Keywords:
Integration, Caliber, Cadence Virtuoso, verification, Mentor Graphics Caliber CAD graphical interface, artificial intelligence.
References

1. Harakterizaciya i modelirovanie signalov v SAPR / V.A. Sklyar, V.K. Zol'nikov, A.I. Yan'kov [i dr.] // Modelirovanie sistem i processov. - 2018. - T. 11, № 1. - S. 62-67.

2. Analiz problem modelirovaniya elementov KMOP BIS / V.K. Zol'nikov, S.A. Evdokimova, A.V. Fomichev [i dr.] // Modelirovanie sistem i processov. - 2018. - T. 11, № 4. - S. 20-25.

3. Zol'nikov, V.K. Obzor programm dlya SAPR submikronnyh SBIS i uchet elektrofizicheskih effektov gluboko submikronnogo urovnya / V.K. Zol'nikov, A.L. Savchenko, A.Yu. Kulay // Modelirovanie sistem i processov. - 2019. - T. 12, № 1. - S. 40-47.

4. Metody shemotehnicheskogo modelirovaniya KMOP SBIS s uchetom radiacii / K.V. Zol'nikov [i dr.] // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2014. - № 2. - S. 5-9.

5. Sravnenie instrumentov vysokourovnevogo sinteza i konstruirovaniya cifrovoy apparatury / A.S. Kamkin, M.M. Chupilko, M.S. Lebedev [i dr.] // Trudy Instituta sistemnogo programmirovaniya RAN. - 2022. - T. 34(5). - S. 7-22. - DOI:https://doi.org/10.15514/ISPRAS-2022-34(5)-1.

6. The performance and energy efficiency potential of FPGAs in scientific computing / T. Nguyen [et al.] // 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS). - IEEE, 2020. - S. 8-19.

7. Vtr 8: High-performance cad and customizable FPGA architecture modelling / K.E. Murray [et al.] // ACM Transactions on Reconfigurable Technology and Systems (TRETS). - 2020. - T. 13. - №. 2. - S. 1-55.

8. HiFlipVX: an Open Source High-Level Synthesis FPGA Library for Image Processing / L. Kalms, A. Podlubne, D. Göhringer // Lecture Notes in Computer Science. - 2019. - Vol. 11444. - Pp. 149-164.

9. Design and research of the behavioral model for the modular reduction device / Y.Zh. Aitkhozhayeva [et al.] // Eurasian Physical Technical Journal. - 2020. - Vol. 17, № 1. - Pp. 151-156. - DOI:https://doi.org/10.31489/2020No1/151-156.

10. Development and modeling of schematic diagram for the modular reduction device / S.T. Tynymbayev, Y.Zh. Aitkhozhayeva, S. Adilbekkyzy [et al.] // Problems of Informatics. - 2019. - No. 4. - Pp. 42-52.

11. Cryptographic information security / S.O. Kramarov [et al.]. - Moscow: RIOR Publishing Center, 2018. - 322 p.

12. GOST 23501.108-85. Sistemy avtomatizirovannogo proektirovaniya. Klassifikaciya i oboznachenie. - M., 1986. - 16 s.

13. Ushakov, P.A. Issledovanie radiacionnoy stoykosti mikroshem serii ADG4XX k vozdeystviyu ioniziruyuschego izlucheniya po effektam pogloschennoy dozy / P.A. Ushakov, K.O. Maksimov, A.A. Dedyuhin // Vestnik IzhGTU imeni M.T. Kalashnikova. - 2019. - T. 22, № 4. - S. 73-82. - DOI:https://doi.org/10.22213/2413-1172-2019-4-73-82.

14. Dmitriev, D.V. Voprosy formirovaniya zondiruyuschego signala orbital'nogo radiovysotomera / D.V. Dmitriev, V.S. Polishkarov // Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. - 2022. - T. 9, № 1. - S. 67-72. - DOI:https://doi.org/10.30894/issn2409-0239.2022.9.1.67.72.

15. Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay, I.I. Strukov // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. - Tambov, 2017. - S. 199-204.

16. Krotkova, N.A. Programmiruemye logicheskie integral'nye shemy (PLIS) / N.A. Krotkova // Nauchnyy al'manah. - 2020. - №. 9-2. - S. 37-39.

17. Mokrushina, S.A. Sravnenie otklika MOP-tranzistora na vozdeystvie rentgenovskogo i gamma-oblucheniya / S.A. Mokrushina, N.M. Romanov // Izvestiya vysshih uchebnyh zavedeniy Rossii. Radioelektronika. - 2020. - T. 23, № 1. - S. 30-40. - DOI:https://doi.org/10.32603/1993-8985-2020-23-1-30-40.

18. Andreev, D.V. Metodika kontrolya izmeneniya zaryadovogo sostoyaniya MDP-struktur pri vozdeystvii sil'nyh elektricheskih poley / D.V. Andreev // Naukoemkie tehnologii. - 2020. - T. 21, № 6. - S. 28-34. - DOI:https://doi.org/10.18127//j19998465-202006-05.

19. Vasantha swaminathan, S. Design and implementation of kogge stone adder using CMOS and GDI design: VLSI based / S. Vasantha swaminathan, J. Surendiran, B.P. Pradeep kumar // International Journal of Engineering and Advanced Technology (IJEAT). - 2019. - Vol. 8, Is. 6S3. - Pp. 2181-2182.

20. Kremenskoy, P.V. Razrabotka i opisanie funkcional'noy elektricheskoy shemy apparata magnitoterapii s komp'yuternym interfeysom pol'zovatelya / P.V. Kremenskoy, S.I. Zaitov, V.N. Radchenko // Vestnik molodezhnoy nauki Rossii. - 2020. - № 4. - S. 8.

21. Dmitriev, V.G. Vliyanie sil'nyh elektromagnitnyh poley na ustoychivost' elementnoy bazy radioelektronnyh sistem / V.G. Dmitriev, A.I. Kupriyanov, Yu.M. Perunov // Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. - 2023. - T. 10, № 2. - S. 89-95. - DOI:https://doi.org/10.30894/issn2409-0239.2023.10.2.89.95.

22. Issledovanie radiacionnoy stoykosti komponentov sistemy upravleniya perednego kalorimetra ustanovki PANDA / N.I. Belikov, S.I. Bukreeva, Yu.V. Milichenko [i dr.] // Pribory i tehnika eksperimenta. - 2018. - № 2. - S. 44-52. - DOI:https://doi.org/10.7868/S0032816218020131.

23. Grabchikov, S.S. Materialy elektromagnitnoy i radiacionnoy zaschity dlya izdeliy elektroniki / S.S. Grabchikov // Izvestiya Nacional'noy akademii nauk Belarusi. Seriya fiziko-tehnicheskih nauk. - 2018. - T. 63, № 1. - S. 7-14.

24. Obespechenie elektromagnitnoy sovmestimosti mikroprocessornyh ustroystv / M.G. Popov, A.A. Mel'nikov, P.N. Man'kov, A.A. Dautov // Vestnik Chuvashskogo universiteta. - 2022. - № 1. - S. 115-127. - DOI:https://doi.org/10.47026/1810-1909-2022-1-115-127.

Login or Create
* Forgot password?