OBSERVATIONAL CHARACTERISTICS OF OSCILLATIONS AND WAVES IN AND AROUND SUNSPOTS. DIFFICULTIES IN OBSERVING AND INTERPRETING
Abstract and keywords
Abstract (English):
This paper summarizes the body of work that we have done over the years on the oscillation processes in sunspots, including their umbra, penumbra, and close vicinity. The study analyzes a number of aspects that impede adequate determining of some characteristics of propagating oscillations and lead to misinterpretation. Using running penumbral waves as an example, we show that their horizontal propagation with decreasing frequency is delusive. The effect is due to different oscillations propagating along magnetic field lines with gradually increasing inclination. This also applies to the three-minute oscillations in the sunspot umbral chromosphere. The change in the inclination of the strips in the half-tone space-time diagrams, which are employed to determine the oscillation propagation velocities along coronal loops, is caused by the projection effect as opposed to real changes in the velocity. We propose to use flare modulation of the natural oscillations of the medium to eliminate the uncertainties that arise while measuring the phase differences between signals of the same parameters, which is employed for estimating wave propagation velocities in the solar atmosphere.

Keywords:
sunspots, oscillations, running penumbral waves, flare modulation of oscillations
Text
Publication text (PDF): Read Download
References

1. Alissandrakis C.E., Dialetis D., Mein P., Schmieder B., Simon G. The Evershed flow in the solar photosphere, chromosphere and chromosphere-corona transition region. Astron. Astrophys. 1988, vol. 201, pp. 339-349.

2. Beckers J.M., Tallant P.E. Chromospheric inhomogeneities in sunspot umbrae. Solar Phys. 1969, vol. 7, pp. 351-365. DOI:https://doi.org/10.1007/BF00146140.

3. Bel N., Leroy B. Analytical study of magnetoacoustic gravity waves. Astron. Astrophys. 1977, vol. 55, p. 239.

4. Belov S.A., Molevich N.E., Zavershinskii D.I. Dispersion of slow magnetoacoustic waves in the active region fan loops introduced by thermal misbalance. Solar Phys. 2021, vol. 296, 122. DOI:https://doi.org/10.1007/s11207-021-01868-4.

5. Bloomfield D.S., Lagg A., Solanki S.K. The nature of running penumbral waves revealed. Astrophys. J. 2007, vol. 671, pp. 1005-1012. DOI:https://doi.org/10.1086/523266.

6. Bogdan T.J., Judge P.G. Observational aspects of sunspot oscillations. Roy. Soc. London Trans. Ser. A, 2006, vol. 364, iss. 1839, pp. 313-331. DOI:https://doi.org/10.1098/rsta.2005.1701.

7. Botha G., Arber T., Nakariakov V., Zhugzhda Y. Chromospheric resonances above sunspot umbrae. Astrophys. J. 2011, vol. 728, 84. DOI:https://doi.org/10.1088/0004-637X/728/2/84.

8. Calisir M.A., Yazici H.T., Kilcik A., Yurchyshyn V. Relationships between physical parameters of umbral dots measured for 12 sunspot umbras with the Goode Solar Telescope. Solar Phys. 2023, vol. 298, 103. DOI:https://doi.org/10.1007/s11207-023-02198-3.

9. Chelpanov A.A., Kobanov N.I. Oscillations accompanying a HeI 10830 Å negative flare in a solar facula. Solar Phys. 2018, vol. 293, 157. DOI:https://doi.org/10.1007/s11207-018-1378-2.

10. Chelpanov A.A., Kobanov N.I. Using flare-induced modulation of three- and five-minute oscillations for studying wave propagation in the solar atmosphere. Solar Phys. 2021, vol. 296, 180. DOI:https://doi.org/10.1007/s11207-021-01910-5.

11. Evershed J. Radial movement in sun-spots. Mont. Not. Roy. Astron. Soc. 1909, vol. 69, p. 454. DOI:https://doi.org/10.1093/mnras/69.5.454.

12. Felipe T., Socas-Navarro H., Khomenko E. Synthetic observations of wave propagation in a sunspot umbra. Astrophys. J. 2014, vol. 795, 9. DOI:https://doi.org/10.1088/0004-637X/795/1/9.

13. French R.J., Bogdan T.J., Casini R., de Wijn A.G., Judge P.G. First observation of chromospheric waves in a sunspot by DKIST/ViSP: The anatomy of an umbral flash. Astrophys. J. Lett. 2023, vol. 945, L27. DOI:https://doi.org/10.3847/2041-8213/acb8b5.

14. Giovanelli R.G. Oscillation and waves in a sunspot. Solar Phys. 1972, vol. 27, pp. 71-79. DOI:https://doi.org/10.1007/BF00151771.

15. Jess D.B., Jafarzadeh S., Keys P.H., Stangalini M., Verth G., Grant S. Waves in the lower solar atmosphere: The dawn of next-generation solar telescopes. Living Rev. Sol. Phys. 2023, vol. 20, A1. DOI:https://doi.org/10.1007/s41116-022-00035-6.

16. Jess D.B., Reznikova V.E., Van Doorsselaere T., Keys P.H., Mackay D.H. The influence of the magnetic field on running penumbral waves in the solar chromosphere. Astrophys. J. 2013, vol. 779, 168. DOI:https://doi.org/10.1088/0004-637X/779/2/168.

17. Khomenko E., Collados M. Magnetohydrostatic Sunspot Models from Deep Subphotospheric to Chromospheric Layers. Astrophys. J. 2008, vol. 689, pp. 1379-387. DOI: 10.1086/ 592681.

18. Kilcik A., Sarp V., Yurchyshyn V., Rozelot J.-P., Ozguc A. Physical characteristics of umbral dots derived from a high-resolution observations. Solar Phys. 2020, vol. 295, 58. DOI:https://doi.org/10.1007/s11207-020-01618-y.

19. Kobanov N.I. On Spatial Characteristics of Five-Minute Oscillations in the Sunspot Umbra. Solar Phys. 1990, vol. 125, pp. 25-30. DOI:https://doi.org/10.1007/BF00154775.

20. Kobanov N.I. Measurements of the differential line-of-sight velocity and longitudinal magnetic field on the Sun with CCD photodetector: part I. Modulationless techniques. Instruments and Experimental Techniques. 2001, vol. 44, pp. 524-529.

21. Kobanov N.I., Makarchik D.V. Propagating waves in the sunspot umbra chromosphere. Astron. Astrophys. 2004, vol. 424, pp. 671-675. DOI:https://doi.org/10.1051/0004-6361:20035960.

22. Kobanov N.I., Kolobov D.Y., Makarchik D.V. Umbral three-minute oscillations and running penumbral waves. Solar Phys. 2006, vol. 238, pp. 231-244. DOI:https://doi.org/10.1007/s11207-006-0160-z.

23. Kolobov D.Y., Chelpanov A.A., Kobanov N.I. Peculiarity of the oscillation stratification in sunspot penumbrae. Solar Phys. 2016, vol. 291, pp. 3339-3347. DOI:https://doi.org/10.1007/s11207-016-0953-7.

24. Lites B.W. Photoelectric observations of chromospheric sunspot oscillations. V. Penumbral oscillations. Astrophys. J. 1988, vol. 334, p. 1054. DOI:https://doi.org/10.1086/166898.

25. Lites B.W. Sunspot oscillations - observations and implications. Sunspots. Theory and Observations. Proceedings of the NATO Advanced Research Workshop on the Theory of Sunspots, held in Cambridge, U.K., September 22-27, 1991. 1992, vol. 375, p. 261. DOI:https://doi.org/10.1007/978-94-011-2769-1_12.

26. Löhner-Böttcher J., Bello González N. Signatures of running penumbral waves in sunspot photospheres. Astron. Astrophys. 2015, vol. 580, A53. DOI:https://doi.org/10.1051/0004-6361/201526230.

27. Madsen C.A., Tian H., DeLuca E.E. Observations of umbral flashes and running sunspot waves with the Interface Region Imaging Spectrograph. Astrophys. J. 2015, vol. 800, A129. DOI:https://doi.org/10.1088/0004-637X/800/2/129.

28. Maltby P., Eriksen G. The Evershed effect as a wave phenomenon. Solar Phys. 1967, vol. 2, pp. 249-257. DOI: 10.1007/ BF00147840.

29. Milligan R.O., Fleck B., Ireland J., Fletcher L., Dennis B.R. Detection of three-minute oscillations in full-disk Lyα emission during a solar flare. Astrophys. J. Lett. 2017, vol. 848, L8. DOI:https://doi.org/10.3847/2041-8213/aa8f3a.

30. Montesinos B., Thomas J.H. The Evershed effect in sunspots as a siphon flow along a magnetic flux tube. Nature. 1997, vol. 390, pp. 485-487. DOI:https://doi.org/10.1038/37307.

31. Osak B.F., Grigoryev V.M., Kruglov V.I., Skomorovskiy V.I. The Atomated Solar Telescope. Novaya tekhnika v astronomii [New Machinery in Astronomy]. 1979, vol. 6, pp. 84-90. (In Russian).

32. Reznikova V.E., Shibasaki K. Flare quasi-periodic pulsations with growing periodicity. Astron. Astrophys. 2011, vol. 525, A112. DOI:https://doi.org/10.1051/0004-6361/201015600.

33. Reznikova V.E., Shibasaki K. Spatial structure of sunspot oscillations observed with SDO/AIA. Astrophys. J. 2012, vol. 756, A35. DOI:https://doi.org/10.1088/0004-637X/756/1/35.

34. Rimmele T.R. On the temporal behaviour of the Evershed effect. Astron. Astrophys. 1994, vol. 290, pp. 972-982.

35. Rouppe van der Voort L.H.M., Rutten P.J., Sutterlin P., Sloover P.J., Krijger J.M. La Palma observations of umbral flashes. Astron. Astrophys. 2003, vol. 403, p. 277. DOI:https://doi.org/10.1051/0004-6361:20030237.

36. Schlichenmaier R., Schmidt W. Flow geometry in a sunspot penumbra. Astron. Astrophys. 2000, vol. 358, pp. 1122-1132.

37. Settele A., Staude J., Zhugzhda Y. Waves in sunspots: Resonant transmission and the adiabatic coefficient. Solar Phys. 2001, vol. 202, iss. 2, pp. 281-292. DOI:https://doi.org/10.1023/A:10 12225321105.

38. Shine R.A., Title A.M., Tarbell T.D., Smith K., Frank Z.A., Scharmer G. High-resolution observations of the Evershed effect in sunspots. Astrophys. J. 1994, vol. 430, pp. 413-424. DOI:https://doi.org/10.1086/174416.

39. Sieyra M.V., Krishna Prasad S., Stenborg G., Khomenko E., Van Doorsselaere T., Costa A., Esquivel A., Riedl J.M. Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan. Astron. Astrophys. 2022, vol. 667, A21. DOI:https://doi.org/10.1051/0004-6361/202244454.

40. Solanki S., Montavon C. Uncombed fields as the source of the broad-band circular polarization of sunspots. Astron. Astrophys. 1993, vol. 275, pp. 283-292.

41. Solov’ev A.A., Kirichek E.A. Sunspot as an isolated magnetic structure: Stability and oscillations. Astrophys. Bull. 2008, vol. 63, pp. 169-180. DOI: 10.1134/ S1990341308020077.

42. Solov’ev A.A., Kirichek E.A. Analytical model of an asymmetric sunspot with a steady plasma flow in its penumbra. Solar Phys. 2016, vol. 291, pp. 1647-1663. DOI:https://doi.org/10.1007/s112 07-016-0922-1.

43. St. John C.E. Radial motion in sun-spots. Astrophys. J. 1913, vol. 37, p. 322. DOI:https://doi.org/10.1086/142002.

44. Stangalini M., Verth G., Fedun V., Aldhafeeri A.A., Jess D.B., Jafarzadeh S., Keys P.H., et al. Large scale coherent magnetohydrodynamic oscillations in a sunspot. Nature Communications. 2022, vol. 13, A479. DOI:https://doi.org/10.1038/s41467-022-28136-8.

45. Tian C., Petrovay K. Structures in compressible magnetoconvection and the nature of umbral dots. Astron. Astrophys. 2013, vol. 551, A92. DOI:https://doi.org/10.1051/0004-6361/201117361.

46. Turova I.P., Ozhogina O.A., Yurysheva O.V. A flare and umbral flashes in a sunspot. Solar Phys. 2005, vol. 227, pp. 75-88. DOI:https://doi.org/10.1007/s11207-005-1715-0.

47. Van Doorsselaere T., Srivastava A.K., Antolin P., Magyar N., Vasheghani Farahani S., Tian H., et al. Coronal heating by MHD waves. Space Sci. Rev. 2020, vol. 216, A140. DOI:https://doi.org/10.1007/s11214-020-00770-y.

48. Zhao J., Felipe T., Chen R., Khomenko E. Tracing p-mode waves from the photosphere to the corona in active regions. Astrophys. J. Lett. 2016, vol. 830, L17. DOI:https://doi.org/10.3847/2041-8205/830/1/L17.

49. Zhugzhda Y.D., Sych R.A. Model of local oscillations in sunspots. Astron. Lett. 2014, vol. 40, pp. 576-593. DOI: 10.1134/ S1063773714090059.

50. Zirin H., Stein A. Observations of running penumbral waves. Astrophys. J. 1972, vol. 178, p. L85. DOI:https://doi.org/10.1007/BF001 51771.

51. URL: http://ckp-rf.ru/ckp/3056/ (accessed October 23, 2023).

Login or Create
* Forgot password?