Phenotypical and genetic breeding evaluation silver birch (Betula pendula ROTH) and downy birch (Betula pubescens EHRH.) ex situ and in vitro
Abstract and keywords
Abstract (English):
The results of a study of birch test cultures obtained by different methods of ex situ pollination and introduced into culture in vitro are presented. To identify the phenotypic, cultural and cytological characteristics of two birch species naturally growing in the Central Black Earth Region - silver birch (diploid) and downy birch (tetraploid), test cultures of seed origin F1 and F2 were specially created. The article presents data on phenotypic (growth in height in the juvenile and reproductive periods of ontogeny), genetic selection (seed propagation system) variability and some characteristics of the introduction of F1 seed progeny of breeding forms of local birch species into in vitro culture. To predict the growth characteristics of seed progeny of breeding forms of local birch species obtained by different methods of pollination - self-pollination and open pollination at different stages of ontogeny (at the age of 2 and 10 years), a statistical processing of the feature of growth in height of families was carried out using the rank Spearman's correlation coefficient ρ. Species specificity was shown in response to different pollination methods, morphogenic activity of self-fertile and self-sterile forms of these birch species on a nutrient medium ½ MC + 6-benzylaminopurine 1 mg/l, primary shoot formation of explants and regenerative capacity in these species, the nature of morphogenesis (formation of the main escape). For the polyploid species (downy birch), a higher level of self-fertility was established, as well as a more intensive growth of shoots in height than for drooping birch; primary explants in the former had a different character of morphogenesis (there was a joint initiation of the main shoot with adventitious ones) than in silver birch (formation of the main shoot), which indicates a greater adaptive potential for polyploid species and their greater opportunities for inclusion in genetic breeding experiments and obtaining valuable breeding forms.

Keywords:
Betula pendula Roth., Betula pubescens Ehrh., self-fertility, self-sterility, juvenile age, in vitro culture, polyploidy, primary explant, multiplication factor, metaphase plate
Text
Publication text (PDF): Read Download
References

1. Staniszewski P., Moskalik T., Bilek M., Szwerc W., Kocjan R., Tomusiak R., Osiak P. The effect of tree age, daily sap volume and date of sap collection on the content of minerals and heavy metals in silver birch (Betula pendula Roth) tree sap / PLOS ONE. 2020; 15(12):1-19. DOI:https://doi.org/10.1371/journal.pone.0244435.

2. Bona A., Kulesza U., Jadwiszczak K. A. Clonal diversity, gene flow and seed production in endangered populations of Betula humilis Schrk. Tree Genetics & Genomes. 2019;15;4: 50. - DOI: https://doi.org/10.1007/s11295-019-1357-2.

3. Medvedeva S. O., Cherepanova O. E., Tolkach O. V., Ponomarev V. I., Malosieva G. V. Dannye po izmenchivosti regiona ITS 1-2 yadernoy ribosomal'noy DNK Betula turkestanica, B. tianschanica, B. procurva. Lesohozyaystvennaya informaciya. 2023;2: 127-135. DOI 10.24419/ LHI.2304-3083.2023.2.10.

4. Bona A., Petrova G., Jadwiszczak K.A. Unfavourable habitat conditions can facilitate hybridisation between the endangered Betula humilis and its widespread relatives B. pendula and B. pubescens. Plant Ecology and Diversity. 2018;11(3): 295-306. doi:https://doi.org/10.1080/17550874.2018.1518497.

5. Anamthawat-Jónsson K., Karlsdóttir L., Thórsson Æ.T., Jóhannsson M. H. Naturally occurring triploid birch hybrids from woodlands in Iceland are partially fertile. New Forests. 2021;52: 659-678. doi: https://doi.org/10.1007/s11056-020-09816-z.

6. Zhang H., Ding J., Holstein N., Wang N. Betula mcallisteri sp. nov. (sect. Acuminatae, Betulaceae), a new diploid species overlooked in the wild and in cultivation, and its relation to the widespread B. luminifera. Front. Plant Sci. 2023; 14: 1113274. doi:https://doi.org/10.3389/fpls.2023.1113274.

7. Belton S., Cubry P., Fox E., Kelleher C. T. Novel Post-Glacial Haplotype Evolution in Birch - A Case for Conserving Local Adaptation. Forests. 2021;12, 1246. doi: https://doi.org/10.3390/f120912.

8. Anamthawat-Jónsson K. Hybrid introgression: the outcomes of gene flow in birch. Science Asia. 2019;45: 203-211. doi:https://doi.org/10.2306/scienceasia1513-1874.

9. Anamthawat-Jónsson K., Karlsdóttir L., Thórsson A.T., Hallsdóttir M. Microscopical palynology: Birch woodland expansion and species hybridisation coincide with periods of climate warming during the Holocene epoch in Iceland. J Microsc. 2023;291(1): 128-141. doi:https://doi.org/10.1111/jmi.13175. Epub 2023 Feb 28. PMID: 36779661.

10. Singatullin I. K., Shayhraziev Sh. Sh., Glushko S. G. Estestvennoe vozobnovlenie berezy povisloy (Betula pendula Roth) v lesostepnoy zone respubliki Tatarstan. Lesnoy vestnik. Forestry Bulletin. 2021;25(5): 14-21. doi:https://doi.org/10.18698/2542-1468-2021-5-14-21. URL: https://www.elibrary.ru/item.asp?id=47276762.

11. Polimorfizm i bioraznoobrazie lesoobrazuyuschih porod v iskusstvennyh i estestvennyh nasazhdeniyah Central'noy lesostepi : monogr. / I. Yu. Isakov, V. I. Mihin, G. S. Sidorov [i dr.]. - Voronezh, 2021. - 158 s. - URL: https://elibrary.ru/item.asp?id=48044502.

12. Popov, V. K. Berezovye lesa Central'noy lesostepi Rossii. - Voronezh : Izd-vo Voronezh. gos. lesotehn. akademii. 2003. - 424 s. URL: https://elibrary.ru/item.asp?id=19505353.

13. Mihin V. I., Mihina E. A. Osobennosti formirovaniya zaschitnyh nasazhdeniy iz berezy povisloy v Central'noy lesostepi Rossii. Lesotehnicheskiy zhurnal. 2019;9(4): 41-49. - URL: https://elibrary.ru/item.asp?id=41748521.

14. Isakov I. Yu. The effect of a single inbreeding on the growth and development of fast-growing tree species, Betula pendula and Betula pubescens. IOP Conf. Ser.: Earth Environ. Sci. 2021;875 012014. doi:https://doi.org/10.1088/1755-1315/875/1/012014.

15. Yancheva S., Kondakova V. Plant tissue culture technology: Present and future development. Bioprocessing of plant in vitro systems. Cham, Springer. 2018; 39-63. doi:https://doi.org/10.1007/978-3-319-54600-1_16.

16. Tret'yakova I. N., Pak M. E., Oreshkova N. V., Padutov V. E. Regeneracionnaya sposobnost' kletochnyh liniy listvennicy sibirskoy v kul'ture in vitro. Izvestiya Rossiyskoy akademii nauk. Seriya biologicheskaya. 2022; 6: 585-596. DOI:https://doi.org/10.31857/S1026347022050195. URL: https://www.elibrary.ru/item.asp?id=49297220.

17. Vetchinnikova L. V., Titov A. F. Karel'skaya bereza - unikal'nyy biologicheskiy ob'ekt. Uspehi sovremennoy biologii. 2019; 139(5): 419-433. DOI:https://doi.org/10.1134/S0042132419050107. URL: https://www.elibrary.ru/item.asp?id=39796762.

18. Mashkina O. S., Tabackaya T. M., Vnukova N. I. Tehnologiya dolgosrochnogo hraneniya v kul'ture in vitro cennyh genotipov berezy i vyraschivanie na ee osnove posadochnogo materiala. Biotehnologiya. 2019; 35(3): 57-67. doi:https://doi.org/10.21519/0234-2758-2019-35-3-57-67. URL: https://www.elibrary.ru/item.asp?id=38304525.

19. Tabackaya T. M., Mashkina O. S. Opyt dolgovremennogo hraneniya kollekcii cennyh genotipov berezy s ispol'zovaniem bezgormonal'nyh pitatel'nyh sred. Lesovedenie. 2020; (2): 147-161. DOI:https://doi.org/10.31857/S0024114820020084. URL: https://www.elibrary.ru/item.asp?id=42414256.

20. Sedgwick P. Spearman's rank correlation coefficient. BMJ Clinical Research. 2018; 349: g7327. DOI:https://doi.org/10.1136/bmj.g7327.

21. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol. Plantarum. 2018; 15(3): 473-497. DOI:https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

22. Mashkina O. S., Tabackaya T. M. Ocenka dlitel'no kul'tiviruemyh in vitro kollekcionnyh klonov ivy po dannym hromosomnogo analiza. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Himiya. Biologiya. Farmaciya. 2023;2: 46-53. URL: https://www.elibrary.ru/item.asp?id=54070178.

23. Grodetskaya T., Evlakov P., Isakov I., Padutov V. The effect of drought on the expression of stress resistance genes in perspective forms of birch / IOP Conference Series: Earth and Environmental Science. International Forestry Forum "Forest ecosystems as global resource of the biosphere: calls, threats, solutions". 2020; 012039. DOIhttps://doi.org/10.1088/1755-1315/595/1/012039.

24. Tikhomirova T. S., Krutovsky K. V., Shestibratov K. A. Molecular traits for adaptation to drought and salt stress in birch, oak and poplar species. Forests. 2023;14(1). Pp. 7. DOI:https://doi.org/10.3390/f14010007.

25. Vetchinnikova L. V., Titov A. F. Vliyanie kadmiya na gemmo- i rizogenez karel'skoy berezy. Fiziologiya rasteniy. 2022; 69(4): 408-416. DOI:https://doi.org/10.31857/S0015330322040194. URL: https://www.elibrary.ru/item.asp?id=48658983.

26. Gailis A., Samsone I., Šēnhofa S. et al. Silver birch (Betula pendula Roth.) culture initiation in vitro and genotype determined differences in micropropagation. New Forests. 2021;52;5: 791-806. DOI: https://doi.org/10.1007/s11056-020-09828-9.

27. Lebedev V. G., Shestibratov K. A. Shirokomasshtabnoe klonal'noe mikrorazmnozhenie drevesnyh lesnyh porod dlya zakladki lesnyh plantaciy // Biologiya kletok rasteniy in vitro i biotehnologiya : tezisy dokladov XI Mezhd. konf. (23-27 sentyabrya 2018, Minsk, Belarus'). - Belarus', 2018. - S. 126-127. URL: https://www.elibrary.ru/item.asp?id=36622494.


Login or Create
* Forgot password?