DETERMINATION OF THE VECTOR VELOCITY OF ARTIFICIAL IONOSPHERIC IRREGULARITIES BASED ON DOPPLER MEASUREMENTS BY THE BI-STATIC SCATTER METHOD OF HF RADIO SIGNALS PROPAGATING OVER LONG RADIO PATHS
Abstract and keywords
Abstract (English):
During experiments on the modification of the high-latitude ionosphere by high-power HF radio waves of ordinary or extraordinary polarization of the EISCAT/Heating facility (Tromsø, Norway) in 2013, 2016, and 2019, Doppler measurements of diagnostic HF radio signals over long radio paths were carried out by the bistatic scatter method. We studied characteristics of Doppler frequency variations in bistatic scattered radio signals, using the experimental results obtained along radio paths of different lengths (up to ~8500 km) and orientation. We examined numerical dependences of the Doppler frequency variations in a radio signal on the azimuth of the wave vector of a radio wave incident onto an artificially disturbed region, on the bistatic scattering angle, and on the azimuthal direction of irregularity motion in an artificially disturbed region of the ionosphere. From simultaneous measurements of the Doppler frequency fD of the radio signal along two diagnostic radio paths, we numerically estimated the velocity vector of irregularities in the artificially disturbed region of the ionosphere. The total vector velocity of artificial ionospheric irregularities can be calculated from measurements of the Doppler frequency shift along several long diagnostic radio paths after preliminary analysis of experimental observations with the results of trajectory modeling of diagnostic HF radio signals.

Keywords:
Radio wave propagation, small-scale artificial ionospheric irregularities, Doppler observations, the EISCAT heating facility, modeling
Text
Publication text (PDF): Read Download
References

1. Afraimovich E.L. Interferential methods of the ionosphere radio sounding. Moscow, Nauka, 1982, 198 p. (In Russian).

2. Anufrieva T.A., Shapiro B.S. Geometricheskie parametry sloya F2 ionosfery [Geometric parameters of the ionospheric F2 layer]. Moscow, Nauka Publ., 1976, 91 p. (In Russian).

3. Avdeev V.B., Belei V.S., Belenov A.F., Galushko V.G., Erukhimov L.M., Myasnikov E.N., et al. Review of results of HF scattering by artificial ionospheric turbulence obtained with UTR-2. Radiophysics and Quantum Electronics. 1994, vol. 37, no. 4, pp. 299–307.

4. Belenov A.F., Bubnov V.A., Erukhimov L.M., Kiselev Yu.V., Komrakov G.P., Mityakova É.E., et al. Parameters of artificial small-scale ionospheric irregularities. Radiophysics and Quantum Electronics. 1977, vol. 20, no. 12, pp. 1240–1245.

5. Blagoveshchenskaya N.F. Perturbing the high-latitude upper ionosphere (F region) with powerful HF radio waves: A 25-year collaboration with EISCAT. URSI Radio Sci. Bull. 2020, iss. 373, pp. 40–55. DOI:https://doi.org/10.23919/URSIRSB.2020. 9318436.

6. Blagoveshchenskaya N.F., Baranets A.N., Borisova T.D., Bubnov V.A. Deviation of decameter radio waves from the great circle path at high latitudes. Radiophysics and Quantum Electronics. 1991, vol. 34, no. 2, pp. 102–105.

7. Blagoveshchenskaya N.F., Borisova T.D., Kornienko V.A., Moskvin I.V., Rietveld M.T., Frolov V.L., et al. Probing of medium-scale traveling ionospheric disturbances using HF-induced scatter targets. Ann. Geophys. 2006, vol. 24, pp. 2333–2345.

8. Blagoveshchenskaya N.F., Borisova T.D., Kornienko V.A., Frolov V.L., Rietveld M.T., Brekke A. Some distinctive features in the behavior of small-scale artificial ionospheric irregularities at high and midlatitudes. Radiophysics and Quantum Electronics. 2007, vol. 50, no. 8, pp. 619–632.

9. Blagoveshchenskaya N.F., Borisova T.D., Yeoman T.K., Rietveld M., Ivanova I.M. Baddeley L.J. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett. 2011, vol. 38, L08802. DOI:https://doi.org/10.23919/URSIGASS49373. 2020.9232263.

10. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A,S., Kayatkin V.N., Yeoman T.K., Haggstrom I. Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves of polarizations in the high-latitude ionospheric F region. Cosmic Res. 2018, vol. 56, no. 1, pp. 11–25. DOI:https://doi.org/10.1134/S0010952518010045.

11. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A,S., Yeoman T.K., Shmelev Yu.A., Leonenko E.E. Characteristics of small-scale ionospheric irregularities in high-latutude F region induced by powerful HF radio waves of extraordinary polarization. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2019, vol. 59, no. 6, pp. 759–773. DOI:https://doi.org/10.1134/S001679401906004X. (In Russian).

12. Blagoveshchenskaya N., Borisova T., Kalishin A., Egorov I., Yeoman T., Haggstrom I. Simultaneous action of X- and O-Mode HF pump waves on the high-latitude upper (F-region) ionosphere at EISCAT. Universe. 2022, vol. 8, no. 2, pp. 91–111. DOI:https://doi.org/10.3390/universe 8020091.

13. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S., Egorov I.M. Artificial ducts created via high-power HF radio waves at EISCAT. Remote Sens. 2023, vol. 15, iss. 10, p. 2300. DOI:https://doi.org/10.3390/rs15092300.

14. Blagoveshchenskii D.V., Zherebtsov G.A. Vysokoshirotnye geofizicheskie yavleniya i prognozirovanie korotkovolnovykh radiokanalov [High-Latitude Geophysical Phenomena and Prediction of HF Radio Channels]. Moscow, Nauka Publ., 1987, 272 p. (In Russian).

15. Borisova T.D., Blagoveshchenskaya N.F., Moskvin I.V., Rietveld M.T., Kosch M.J., Thidé B. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February, 1996. Ann. Geophys. 2002, vol. 20, pp. 1479–1486. DOI: 10.5194/ angeo-20-1479-2002.

16. Borisova T.D., Blagoveshchenskaya N.F., Kornienko V.A., Rietveld M. Determining the ionospheric irregularity velocity vector based on Doppler measurements in the artificially modified F-2 region of the polar ionosphere. Geomagnetism and Aeronomy. 2007, vol. 47, no. 1, pp. 76–84. DOI: 10.1134/ S0016793207010124.

17. Borisova T.D., Blagoveshchenskaya N.F., Kornienko V.A., Frolov V.L., Vertogradov G.G., Vertogradov V.G. Splitting of the Doppler frequency shift of bi-static backscatter signals during the Sura experiments. Geomagnetism and Aeronomy. 2009, vol. 49, no. 4, pp. P. 510–518.

18. Borisova T.D., Blagoveshchenskaya N.F., Yeoman T.K., Haggstrom I. Excitation of artificial ionospheric turbulence in the high-latitude ionospheric F region as a function of the EISCAT/Heating effective radiated power. Radiophysics and Quantum Electronics. 2017, vol. 60, no. 1, pp. 273–290.

19. Chernyshov D.V., Vasilyeva T.N. Prognoz Maksimalnykh Primenimykh Chastot: W=10, 50, 150, 200 [Prediction of Maximal Applied Freguencies: W=10, 50, 150, 200]. Moscow, Nauka Publ., 1975, 54 p. (In Russian).

20. Dimant Ya.S. Dissipative parametric instability in strongly ionized plasma. Radiophysics and Quantum Electronics. 1977, vol. 20, pp. 1259–1267.

21. Eglitis P., Robinson T.R., Rietveld M.T., Wright D.M., Bond G.E. The phase speed of artificial field-aligned irregularities observed by CUTLASS during HF modification of auroral ionosphere. J. Geophys. Res. 1998, vol. 103, no. A2, pp. 2253–2259. DOI: 10.1029/ 97JA03233.

22. Erukhimov L.M., Metelev S.A., Mityakova E.E., Myasnikov E.N., Rakhlin A.V., Uryadov V.P., Frolov V.L. Experimental research in artificial ionospheric turbulence. Teplovye Nelineinye Yavlenya v Plazme [Plasma Thermal Nonlinear Phenomena]. Gorky, 1979, pp. 7–45. (In Russian).

23. Erukhimov L.M., Metelev S.A., Myasnikov E.N., Mityakov N.A., Frolov V.L. Artificial ionospheric turbulence (Review). Radiophysics and Quantum Electronics. 1987, vol. 30, no. 2, pp. 156–171.

24. Fejer J.A. Ionospheric Modification and Parametric Instabilities. Rev. Geophys. Space Phys. 1979, vol. 17, no. 1, pp. 135–154. DOI:https://doi.org/10.1029/RG017i001p00135.

25. Frolov V.L. Iskusstvennaya Turbulentnost Sredneshirotnoi Ionosfery [Artificial Turbulence in Midlatitude Ionosphere]. Nizhni Novgorod, State University Publ., 2017, 468 p. DOI:https://doi.org/10.31857/S0023420622040045. (In Russian).

26. Frolov V.L., Erukhimov L.M., Metelev S.A., Sergeev E.N. Temporal behaviour of artificial small-scale ionospheric irregularities: Review of experimental results. J. Atmos. Solar-Terr. Phys. 1997, vol. 59, no. 18, pp. 2317–2333. DOI:https://doi.org/10.1016/S1364-6826(96)00126-5.

27. Frolov V.L., Vertogradov G.G., Vertogradov V.G. On specific features of diurnal variations in characteristics of the diagnostic stimulated electromagnetic emission and their relation to the evolution of artificial ionospheric irregularities. Radiophysics and Quantum Electronics. 2008, vol. 51, no. 4, pp. 247–258.

28. Frolov V.L., Bolotin I.A., Komrakov G.P., Vertogradov G.G., Vertogradov V.G., Vertogradova E.G. Gyroharmonic features of the HF-induced ionospheric irregularities. Radiophysics and Quantum Electronics. 2012, vol. 55, no. 12, pp. 357–381. DOI:https://doi.org/10.1007/s11141-012-9374-0.

29. Gershman B.N., Erukhimov L.M., Yashin Yu. Ya. Volnovye Yavleniya v Ionosfere i Kosmicheskoi Plazme [Wave Phenomena in the Ionosphere and in the Cosmic Plasma]. Moscow, Nauka Publ., 1984, 392 p. (In Russian).

30. Grach S.M., Trakhtengerts V.Yu. Parametric excitation of ionospheric irregularities extended along the magnetic field. Radiophysics and Quantum Electronics. 1975, vol. 18, no. 9, pp. 951–957. DOI:https://doi.org/10.1007/BF01038190.

31. Grach S.M., Karashtin A.N., Mityakov N.A., Rapoport V.O., Trakhtengerts V.Yu. Parametric interaction between electro-magnetic radiation and ionospheric plasma. Radiophysics and Quantum Electronics. 1977, vol. 20, no. 12, pp. 1254–1258.

32. Grach S.M., Sergeev E.N., Mishin E.V., Shindin A.V. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radio waves. Physics-Uspekhi. 2016, vol. 186, no. 11, pp. 1091–1128. DOI:https://doi.org/10.3367/UFNe.2016. 07.037868.

33. Greenwald R.A., Baker K.B., Dudeney J.R., Pinnock M., Jones T.B., Thomas E.C. DARN/SuperDARN: A global view of the dynamics of high-latitude convection. Space Sci.: Space Sci. Rev. 1995. Vol. 71. P. 761–796. DOI:https://doi.org/10.1007/BF00751350.

34. Gurevich A.V. Nonlinear phenomena in the ionosphere. Physics-Uspekhi. 2007, vol. 50, no. 11, pp. 1091–1121. DOI:https://doi.org/10.1070/PU2007v050n11ABEH006212.

35. Hysell D.L., Kelley M.C., Yampolski Y.M., Beley V.S., Koloskov A.V., Ponomarenko P.V., Tyrnov O.F. HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res. 1996, vol. 101. P. 26981.

36. Kalishin A.S., Blagoveshchenskaya N.F., Borisova T.D., Rogov D.D. Remote diagnostics of effects induced by high-latitude heating facilities. Russian Meteorology and Hydrology. 2021, vol. 46, no. 4, pp. 231–240.

37. Kelley M.C. The Earth’s ionosphere: Plasma Physics and Electrodynamics. San Diego. CA. USA: Academic Press. 1989, 556 p.

38. Koloskov A.V., Belei V.S., Leizer T.B., Yampolsky Yu.M. Radial drift of stimulated small-scale ionospheric irregularities perpendicular to the geomagnetic field. Radiofizika i radioastronomiya [Radiophysics and Radioastronomy]. 1999, vol. 4, no. 3, pp. 247–260. (In Russian).

39. Lester M., Chapman P.J., Cowley S.W.H., Crooks S.J., Davies J.A., Hamadyk P., et al. Stereo CUTLASS: A new capability for the SuperDARN radars. Ann. Geophys. 2004, vol. 22, no. 2, pp. 459–473.

40. Myasnikov E.N., Muravjeva N.V., Sergeev E.N., Frolov V.L. Spatial spectrum of artificial ionospheric irregularities induced by powerful HF radio waves. Radiophysics and Quantum Electronics. 2001, vol. 44, no. 11, pp. 833–846.

41. Namazov S.A., Novikov V.D., Khmel’nitskii I.A. Doppler frequency shift during ionospheric propagation of decametric radio waves (Review). Radiophysics and Quantum Electronics. 1975, vol. 18, no. 4, pp. 345–364. DOI:https://doi.org/10.1007/BF01036419.

42. Nasyrov A.M. Scattering of Radio Waves by Anisotropic Ionospheric Irregularities. Kazan Univ. Publ., 1991, 149 p. (In Russian).

43. Rawer K., Bilitza D., Ramakrishnan S. Goals and Status of the International Reference Ionosphere. Rev. Geophys. 1978, vol. 16, no. 2, pp. 177–181. DOI:https://doi.org/10.1029/RG016i002p0017.

44. Rietveld M.T., Senior A., Markkanen J., Westman A. New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 2016, vol. 51, no. 9, pp. 1533–1546. DOI: 10.1002/ 2016RS006093.

45. Rishbeth H., van Eyken A.P. EISCAT — early history and the first ten years of operation. J. Atmos. Terr. Phys. 1993, Vol. 55, no. 4-5. P. 525–542. DOI:https://doi.org/10.1016/0021-9169(93)90002-G.

46. Robinson T.R. The heating of the high latitude ionosphere by high power radio waves. Phys. Rep. 1989. Vol. 179, no. 2-3. P. 79–209. DOI:https://doi.org/10.1016/0370-1573(89)90005-7.

47. Sivokon V.P. A new method for research on magnetically oriented ionospheric inhomogeneities using a program of radio-system determination. Geomagnetism and Aeronomy. 2020, vol. 60, no. 2, pp. 236–242. DOI:https://doi.org/10.1134/s0016793220020140.

48. Stubbe P., Kopka H. Summary of results obtained with the Tromso heating facility. Radio Sci. 1983, vol. 18, no. 6, pp. 831–834. DOI:https://doi.org/10.1029/RS018i006p00831.

49. Thome G.D., Blood D.W. First observations of RF backscatter from field-aligned irregularities produced by ionospheric heating. Radio Sci. 1974, vol. 9, no. 11, P. 917–921. DOI:https://doi.org/10.1029/RS009i011p00917.

50. Uryadov V.P., Vertogradov G.G., Vertogradov V.G., Ponyatov A.A., Frolov V.L. Radar observations of artificial ionospheric turbulence during a magnetic storm. Radiophysics and Quantum Electronics. 2004, vol. 47, no. 9, pp.. 646–661.

51. Uryadov V.P., Ponyatov A.A., Vertogradov G.G., Vertogradov V.G., Kubatko S.V., Cherkashin Yu.N. Structure and dynamics of the ionospheric region with artificial small-scale irregularities according to complex measurements of the scattered radio-signal characteristics. Radiophysics and Quantum Electronics. 2009, vol. 51, no. 4, pp. 910–922.

52. Vas’kov V.V., Gurevich A.V. Nonlinear resonant instability of a plasma in the field of an ordinary electromagnetic wave. JETP. 1975, vol. 42, no. 1, p. 91.

53. Vas’kov V.V., Gurevich A.V. Self-focusing and resonant instability in ionospheric F region. Thermal nonlinear plasma phenomena. 1979, pp. 81–138. (In Russian).

54. Vertogradov G.G., Uryadov V.P., Vertogradov V.G., Vertogradova E.G., Kubatko S.V. Drift velocity of small-scale artificial ionospheric irregularities according to a multifrequency HF Doppler radar. II. Observation and modeling results. Radiophysics and Quantum Electronics. 2015, vol. 58, no. 11, pp. 381–389.

55. Yampolkii Yu.M. Echo scattering of SW signals by artificial ionospheric turbulence. Radiofizika [Radiophysics and Quantum Electronics]. 1989, vol. 32, no. 4, pp. 519–521. (In Russian).

56. Yampolski Y., Milikh G., Zalizovski A., Koloskov A., Reznichenko A., Nossa E., Bernhardt P.A., Briczinski S., Grach S.M., Shindin A., Sergeev E. Ionospheric Non-linear Effects Observed During Very-Long-Distance HF Propagation. Front. Astron. Space Sci. 2019, vol. 6, no. 12. DOI: 10.3389/ fspas.2019.00012.

57. Yeoman T.K., Wright D.M., Robinson T.R, Davies J.A., Rietveld M. High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromso heater. Ann. Geophys. 1997, vol. 1, no. 5, pp. 634–644. DOI:https://doi.org/10.1007/s00585-997-0634-9.

58. URL: https://flux.phys.uit.no/ArcMag/ (accessed April 3, 2024).

59. URL: https://rscf.ru/project/22-17-00020/ (accessed April 3, 2024).

Login or Create
* Forgot password?