SCALARIZATION METHOD IN PROBLEMS OF ELASTIC SURFACE-WAVE PROPAGATION IN ROTATING TRANSVERSELY ISOTROPIC HALF-SPACE
Rubrics: MECHANICS
Abstract and keywords
Abstract (English):
T he work objectives are to generalize the scalarization method of dynamic elastic fields in the transversely isotropic media to the tasks for the environments rotating with a constant angular velocity, and to develop the methodological apparatus for describing the effect of rotation on the parameters of surface acoustic waves. On the basis of this method, the scientificmethodical device for the construction of new acoustic-wave gyroscopes is proposed. Parameter determination ratios for surface-acoustic waves (SAW) propagating on the boundary of the rotating half-space of the transversely isotropic material with arbitrarily spaced axis of material symmetry are obtained and validated. An example of the numerical simulation for the isotropic rotating half-space case is given. The proposed methodological apparatus and numerical simulation examples can be used to develop new types of gyroscopes on acoustic-wave systems for navigation, guidance and control of various mobile objects in aviation, robotics, etc.

Keywords:
scalarization method, transversely isotropic medium, acoustic waves, surface acoustic wavesj.
Text

Введение. При решении задач динамической теории упругости успешно применяется метод скаляризации [1–3], за-

ключающийся в представлении тензорных полей перемещений, напряжений и деформаций через независимые ска-

лярные функции [4–6]. Применение данного метода существенно облегчает решение многих задач по определению

упругих полей в различных конструкциях. Так, в [4] определено напряженно-деформированное состояние (НДС) в

многослойной цилиндрической трубе при динамических нагрузках. В [5] рассчитано НДС в слоистой цилиндрической конструкции при многократном воздействии локальных динамических нагрузок. В [6] дан анализ динамического по-

ведения анизотропных многослойных конструкций и т. д.

References

1. Felsen, L., Marcush, N. Izluchenie i rasseyanie voln. [Radiation and scattering of waves.] Moscow: Mir, 1978, vol. 1, 547 p. (in Russian).

2. Morse, F.-М., Feshbach, H. Metody teoreticheskoy fiziki. [Methods of Theoretical Physics.] Moscow: Izdatel´stvo inostrannoy literatury, 1960, vol. 2, 896 p. (in Russian).

3. Sizov, V.P. O skalyarizatsii dinamicheskikh uprugikh poley v transversal´no-izotropnykh sredakh. [On scalarization of dynamic elastic fields in transversely isotropic media.] Izvestia: Mechanics of Solids, 1988, no. 5, pp. 55-58 (in Russian).

4. Petrov, А.М., Sizov, V.P. Opredelenie napryazhenno- deformirovannogo sostoyaniya v mnogosloynoy tsilindricheskoy trube pri dinamicheskikh nagruzkakh. [Determination of stress-strain state in a multi-cylindrical tube under dynamic loads.] Izvestia: Mechanics of Solids, 1994, no. 5, pp. 69-75 (in Russian).

5. Miroshnichenko, I.P., Sizov, V.P. Opredelenie napryazhenno-deformirovannogo sostoyaniya v sloistoy tsilindricheskoy konstruktsii pri mnogokratnom vozdeystvii lokal´nykh dinamicheskikh nagruzok. [Determination of stressstrain state in a layered cylindrical structure under local dynamic loading.] Izvestia: Mechanics of Solids, 2000, no. 1, pp. 97- 104 (in Russian).

6. Petrov, А.М., Sizov, V.P Dinamicheskoe povedenie anizotropnykh mnogosloynykh tsilindricheskikh konstruktsiy. [Dynamic behavior of anisotropic multilayered cylindrical structures.] Izvestia: Mechanics of Solids, 2000, no. 3, pp. 34-39 (in Russian).

7. Vakhtin, Y.V., et al. Mikroakustomekhanicheskiy giroskop: patent 2543706 Ros. Federatsiya: MPK G 01 C 19/56, H 03 H 9/25. [Microacoustomehanichal gyroscope.] RF Patent no. 2543706, 2015 (in Russian).

8. Kalinin, V.A., et al. Giroskop na poverkhnostnykh akusticheskikh volnakh: patent 2390727 Ros. Federatsiya. [Acoustic-surface-wave gyroscope.] RF Patent no. 2390727, 2010 (in Russian).

9. Aigner, R. Apparatus and method for detecting a rotation: patent 7895892 В2 US, 01.03.2011.

10. Novatsky, V. Teoriya uprugosti. [Elasticity theory.] Moscow: Mir, 1975, 872 p. (in Russian).

11. Fedorov, F.I. Teoriya uprugikh voln v kristallakh. [Elastic wave theory in crystals.] Moscow: Nauka, 1965, 386 p. (in Russian).

12. Sirotin, Y.I., Shaskolskaya, M.P. Osnovy kristallografii. [Basic crystallography.] Moscow: Nauka, 1975, 680 p. (in Russian).

13. Rashevskiy, P.К. Rimanova geometriya i tenzornyy analiz. [Riemann geometry and tensor analysis.] Moscow: Nauka, 1967, 664 p. (in Russian).

14. Brekhovskikh, L.М. Volny v sloistykh sredakh. [Waves in layered media.] Moscow: AN SSSR, 1957, 502 p. (in Russian).

Login or Create
* Forgot password?