Irkutsk, Russian Federation
Irkutsk, Russian Federation
A distinctive feature of the September 6, 2012 event was that sources of narrow-band (2–4 GHz) sub-second pulses (SSP) were observed in small areas of flare loops with so-called bright ultraviolet knots with high plasma density up to 10¹¹ cm⁻³. Time profiles of hard X-rays of the flare, although similar to microwave light curves, do not have structures corresponding to SSP. Analysis of microwave, X-ray, and ultraviolet data has shown that the observable pulses of microwave radiation with a narrow spectral band are coherent in nature and are generated by electrons with energies of several tens of kiloelectronvolt in bright knots at a double plasma frequency. The results of the observations suggest that the appearance of bright knots is associated with local processes of energy release due to interaction of flare loops.
Sun, fine temporal structure, UV bright knots, microwave bursts, coherent emission
1. Altyntsev A.T., Kuznetsov A.A., Meshalkina N.S., Yihua Y. On the origin of microwave type U-bursts. Astronomy and Astrophysics. 2003, vol. 411, p. 263. DOI:https://doi.org/10.1051/0004-6361:20031273.
2. Altyntsev A.T., Grechnev V.V., Meshalkina N.S., Yihua Y. Microwave type III-like bursts as possible signatures of magnetic reconnection. Solar Phys. 2007, vol. 242, iss.1-2, pp. 111-123. DOI:https://doi.org/10.1007/s11207-007-0207-9.
3. Altyntsev A.T., Meshalkina N.S., Lysenko A.L., Fleishman G.D. Rapid variability in the SOL2011-08-04 flare: Implications for electron acceleration. Astrophys. J. 2019, vol. 883, 338. DOI:https://doi.org/10.3847/1538-4357/ab3808.
4. Altyntsev A.T., Meshalkina N.S., Lesovoi S.V., Zhdanov D.A. Subsecond pulses in microwave emission of the Sun. Physics-Uspekhi. 2023, vol. 66, no. 7, pp. 691-703. DOI:https://doi.org/10.3367/UFNe.2022.06.039205.
5. Atwood W.B., Abdo A.A., Ackermann M., Althouse W., Anderson B., Axelsson M., et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission.Astrophys. J. 2009, vol. 697, pp. 1071-1102. DOI:https://doi.org/10.1088/0004-637X/697/2/1071.
6. Benz A.O. Millisecond Radio Spikes. Solar Phys. 1986, vol. 104, no. 1, pp. 99-110. DOI:https://doi.org/10.1007/BF00159950.
7. Benz A.O., Magun A., Stehling W., Su H. Electron beams in the low corona. Solar Phys. 1992, vol. 141, pp. 335-346. DOI:https://doi.org/10.1007/BF00155184.
8. Cheng C.C. Spatial distribution of XUV emission and density in a loop prominence. Solar Phys. 1980, vol. 65, iss. 2, pp. 347-356. DOI:https://doi.org/10.1007/BF00152798.
9. Cheng X., Zhang J., Saar S.H., Ding M.D. Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 2012, vol. 761, 62. DOI:https://doi.org/10.1088/0004-637X/761/1/62.
10. Doschek G.A., Strong K.T., Tsuneta S. The bright knots at the tops of soft X-ray loops: Quantitative results from YOHKOH. Astrophys. J. 1995, vol. 440, p. 370. DOI:https://doi.org/10.1086/175279.
11. Fleishman G.D., Melnikov V.F. Millisecond solar radio spikes. Physics-Uspekhi. 1998, vol. 41, no. 12, pp. 1157-1189. DOI: 10.070/PU1998v041n12ABEH000510.
12. Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., Krissinel B.B., Zandanov V.G., Altyntsev A.T., et al. The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data. Solar Phys. 2003, vol. 216, pp. 239-272. DOI:https://doi.org/10.1023/A:1026153410061.
13. Golub L., Bookbinder J., DeLuca E., Warren H., Schrijver C.J., Shine R., et al. A new view of the solar corona from the transition region and coronal explorer (TRACE). Physics of Plasmas. 1999, vol. 6, iss. 5, pp. 2205-2216. DOI:https://doi.org/10.1063/1.873473.
14. Guidice D.A., Cliver E.W., Barron W.R., Kahler S. The Air Force RSTN System. Bull. of the American Astronomical Soc. 1981, vol. 13, p. 553.
15. Handy B.N., Acton LW., Kankelborg C.C., Wolfson C.J., Akin D.J., Bruner M.E., et al. The Transition Region and Coronal Explorer. Solar Phys. 1999, vol. 187, pp. 229-260. DOI:https://doi.org/10.1023/A:1005166902804.
16. Kochanov A.A., Anfinogentov S.A., Prosovetsky D.V., Rudenko G.V., Grechnev V.V. Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range. Publ. Astron. Soc. Japan. 2013, vol. 65, no. SP1, article id. S19. DOI:https://doi.org/10.1093/pasj/65.sp1.S19.
17. Kolomanski S., Mrozek T., Chmielewska E. Fine structure and long duration of a flare coronal X-ray source with RHESSI and SDO/AIA data. arXiv:1701.09127. 2017. DOI:https://doi.org/10.48550/arXiv.1701.09127.
18. Lemen J.R., Title A.M., Akin D.J., Boerner P.F., Chou C., Drake J.F., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, no. 1-2, pp. 17-40. DOI:https://doi.org/10.1007/s11207-011-9776-8.
19. Lin R.P., Schwartz R.A., Kane S.R., Pelling R.M., Hurley K.C. Solar hard X-ray microflares. Astrophys. J. 1984, vol. 283, pp. 421-425. DOI:https://doi.org/10.1086/162321.
20. Lin R.P., Dennis B.R., Hurford G.J., Smith D.M., Zehnder A., Harvey P.R., et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 2002, vol. 210, pp. 3-32. DOI:https://doi.org/10.1023/A:1022428818870.
21. Meegan C., Lichti G., Bhat P.N., Bissaldi E., Briggs M.S., Connaughton V., et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 2009, vol. 702, pp. 791-804. DOI:https://doi.org/10.1088/0004637X/702/1/791,
22. Meshalkina N.S., Altyntsev A.T., Sych R.A., Chernov G.P., Yihua Y. On the wave mode of subsecond pulses in the cm-range. Solar Phys. 2004, vol. 221, pp. 85-99. DOI:https://doi.org/10.1023/B:SOLA.0000033356.96547.65.
23. Meshalkina N.S., Altyntsev A.T., Zhdanov D.A. Study of flare energy release using events with numerous type III-like bursts in microwaves.Solar Phys. 2012, vol. 280, no. 2, p. 537. DOI:https://doi.org/10.1007/s11207-012-0065-y.
24. Nakajima H., Nishio M., Enome S., Shibasaki K., Takano T., HanaokaY., et al. The Nobeyama Radioheliograph. Proc. IEEE. 1994, vol. 82, no. 5, pp. 705-713.
25. Patsourakos S., Antiochos S.K., Klimchuk J.A. A model for bright extreme-ultraviolet knots in solar flare loops. Astrophys. J. 2004, vol. 614, iss. 2, p. 1022. DOI:https://doi.org/10.1086/423779.
26. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 3-15. DOI:https://doi.org/10.1007/s11207-011-9841-3.
27. Shimizu T., Tsuneta S., Acton L.W., Lemen J.R., Ogawara Y., Uchida Y. Morphology of active region transient brightenings with the YOHKOH Soft X-Ray Telescope. Astrophys. J. 1994, vol. 422, pp. 906-911. DOI:https://doi.org/10.1086/173782.
28. Torii C., Tsukiji Y., Kobayashi S., Yoshimi N., Tanaka H., Enome S. Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. of the Research Institute of Atmospherics, Nagoya University, 1979, vol. 26, pp. 129-132.
29. Tsuneta S., Acton L., Bruner M., Lemen J., Brown W., Caravalho R., et al. The Soft X-ray Telescope for the SOLAR-A mission. Solar Phys. 1991, vol. 136, pp. 37-67. DOI:https://doi.org/10.1007/BF00151694.
30. Widing K., Hiei E. A SKYLAB flare associated with a hard X-ray burst. Astrophys. J. 1984, vol. 281, p. 426. DOI:https://doi.org/10.1086/162113.
31. Warren H.P. Fine structure in solar flares. Astrophys. J. Vol. 536, iss. 2, pp. L105-L108. DOI:https://doi.org/10.1086/312734.
32. Zhdanov D.A., Zandanov V.G. Broadband microwave spectropolarimeter. Central European Astrophysical Bulletin. 2011, vol. 35, p. 223.
33. Zhdanov D.A., Zandanov V.G. Observations of microwave fine structures by the Badary Broadband Microwave Spectropolarimeter and the Siberian Solar Radio Telescope. Solar Phys. 2015, vol. 290, no. 1, p. 287. DOI:https://doi.org/10.1007/s11207-014-0553-3.
34. URL: https://badary.iszf.irk.ru/Ftevents.php (accessed June 2, 2023).
35. URL: http://ru.iszf.irk.ru/~nata/120906/335_blue.mp4 (accessed June 2, 2023).
36. URL: http://ckp-rf.ru/usu/73606/ (accessed June 2, 2023).
37. URL: http://ckp-angara.iszf.irk.ru/ (accessed June 2, 2023).