REAL-TIME OPTICAL NETWORK IN AVIONICS APPLICATIONS
Abstract and keywords
Abstract (English):
This study analyzes existing approaches to building fault-tolerant onboard systems at the hardware and software levels. The main advantages of constructing an Avionics Integrated Vehicle System (AIVS) based on fiber optic components are considered, particularly for deploying a Unified Intelligent System (UIS) that provides intelligent decision-making in case of abnormal situations. Scenarios for countering various abnormal situations at different levels of aircraft equipment complex (AEC) operation are developed, aiming to enhance the fault tolerance of its systems and, consequently, flight safety as a whole. Algorithms for reconfiguring the AIVS in case of abnormal situations, both during flight and on the ground, are devised. Principles for creating a specialized knowledge base for information support (KBIS) based on operational documentation are proposed. Logical programming methods are employed to simplify the formalization of knowledge stored in the KBIS and to facilitate modification and supplementation of the KBIS with new data. Calculation methodologies for AIVS configuration characteristics based on the KBIS are developed. Dynamic synthesis methods for generating new AIVS configurations are designed to address abnormal situations arising during aircraft operation. State space information formalized using logical programming methods is used to solve the synthesis problem. A complete system graph is constructed considering its redundancy, and a search-synthesis for the most suitable AIVS architecture capable of countering failures is performed.

Keywords:
Distributed information computing network architecture, fully optical network, dynamic reconfiguration, expert system, decision support system, neural controller, WDM network, system-on-a-chip
References

1. Novikov, V.M. Reshenie zadach intellektual'noy podderzhki ekipazha v chasti rekonfiguracii pri KBO pri otkazah / V.M. Novikov // Sbornik tezisov dokladov VI Mezhdunarodnoy nauchno-prakticheskoy konferencii «AVIATOR» (14-15 fevralya 2019 goda). - Voronezh, 2019. - S. 189-192.

2. Kopetz, H. Real-Time Systems. Design Principles for Distributed Embedded Applications / H. Kopetz // Springer, 2011. - 376 p.

3. Distributed Interrupt Signalling for SpaceWire Networks / S. Gorbachev, L. Koblyakova, Y. Sheynin, A. Stepanov, E. Suvorova, M. Suess // Proceedings of the 5th International SpaceWire Conference. - Gothnburg 2013. - Pp. 35-41.

4. Koblyakova L. Asynchronous hard real time signals transmission in embedded networks / L. Koblyakova, Y. Sheynin, E. Suvorova // International Journal of Embedded and Real-Time Communication Systems. - 2014. - T. 5(4). - P. 24-44. - DOI:https://doi.org/10.4018/IJERTCS.2014100102.

5. Koblyakova, L.V. Zadachi signalov zhestkogo real'nogo vremeni vo vstroennyh sistemah i bortovyh setyah / L.V. Koblyakova, S.V. Gorbachev // Nauchnaya sessiya GUAP : sbornik dokladov. - Sankt-Peterburg, 2016. - S. 79-87.

6. Sheinin, Y. SpaceWire technology for parallel systems and onboard distributed systems / Y. Sheinin, T. Solokhina, Y. Petrichkovich // Electronics: science, technology, business. - 2006. - №. 5. - P. 64-75

7. Optimizing Extensibility in Hard Real-Time Distributed Systems / Q. Zhu [et al.] // Real-Time and Embedded Technology and Applications, IEEE Transactions on Industrial Informatics. - 2010. - T. 6(4). - Pp. 621-636. - DOI:https://doi.org/10.1109/TII.2010.2053938.

8. Zhu, X. Multi-Dimensional Scheduling for Real-Time Tasks on Heterogeneous Clusters / X. Zhu, P. Lu. // Journal of Computer Science and Technology. - 2009. - Vol. 24, Is. 3. - Pp. 434-446

9. Steen, M. A brief introduction to distributed systems / M. Steen, A.S. Tanenbaum // Computing. - 2016. - Vol. 98, Is. 10. - Pp. 967-1009.

10. Aydin H. Power-aware scheduling for periodic real-time tasks / H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez // IEEE Transactions on Computers. - 2004. - T. 53(5). - Pp. 584-600.

11. Scheduling Mechanisms for SpaceWire Networks / I. Korobkov, E. Podgornova, D. Raszhivin [et al.] // 2015 17th Conference of Open Innovations Association (FRUCT), Yaroslavl, Russia. - 2015. - Pp. 82-88. - DOI:https://doi.org/10.1109/FRUCT.2015.7117976.

12. SpaceFibre Draft H1 / S. Parkes, A. Ferrer-Florit, A. Gonzalez, C. McClements / Space Technology Centre, University of Dundee, 2013.

13. Specializirovannyy neyrokontroller apparatnoy podderzhki prinyatiya resheniy / A.M. Solov'ev, M.E. Semenov, I.B. Mischenko, V.M. Novikov // Sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferencii «AVIATOR», 11-12 fevralya 2021 g. - Voronezh: VUNC VVS «VVA imeni professora N.E. Zhukovskogo i Yu.A. Gagarina», 2021.

14. Wei, M.Y. Design of a DSP-based motion-cueing algorithm using the kinematic solution for the 6-DoF motion platform / M.Y. Wei // Aerospace. - 2022. - V. 9. - C. 203.

15. Chen K. Simulation platform for SINS/GPS integrated navigations system of hypersonic vehicles based on flight mechanics / K. Chen, F. Shen, J. Zhou, X. Wu // Sensors 2020. - T. 20(18). - C. 5418. - DOI:https://doi.org/10.3390/s20185418.

16. Design and control of a multi-axis servo motion chair system based on a microcontroller / M.Y. Wei [et al.]// Energies. - 2022. - V. 15(12). - C. 4401. - DOI:https://doi.org/10.3390/en15124401.

17. Robotic experimental setup with a Stewart platformto emulate underwater vehicle-manipulator systems / K.A. Cetin, H. Tugal, Y. Petillot [et al.] // Sensors. - 2022. - V. 22(15). - C. 5827. - DOI:https://doi.org/10.3390/s22155827.

18. Increasing motion fidelity in driving simulators using a fuzzy-based washout filter. / H. Asadi, C.P. Lim, S. Mohamed [et al.] // IEEE Transactions on Intelligent Vehicles. - 2019. - Vol. 4(2). - Pp. 298-308. - DOI:https://doi.org/10.1109/TIV.2019.2904388.

19. Golebiewski, M. Flight simulator’s energy consumption depending on the conditions of the air operation / M. Golebiewski, M. Galant-Golebiewska; R. Jasinksi // Energies. - 2022. - Vol. 15(2). - C. 580. - DOI:https://doi.org/10.3390/en15020580.

20. Design, Analysis, and Implementation of a Four-DoF Chair Motion Mechanism / M.Y. Wei, Y.L. Yeh, S.W. Chen [et al.] // IEEE Access. - 2021. - Vol. 9. - Pp. 124986-124999. - doi:https://doi.org/10.1109/ACCESS.2021.3109974.

21. Air traffic complexity recognition based on complex networks. / M.G. Wu, Z.L. Ye, X.X. Wen, X. Jiang // J. Beijing Univ. Aeronaut. Astronaut. - 2020. - Vol. 46. - Pp. 839-850.

22. Identification of key flight conflict nodes based on complex network theory / M. Wu, Z. Wang, X. Gan [et al.] // J. Northwestern Polytech. Univ. - 2020. - Vol. 38. - Pp. 279-287.

23. Control- aircraft state interdependent network model and characteristic analysis / A. Li, D.M. Nie, X.X. Wen [et al.] // J. Beijing Univ. Aeronaut. Astronaut. - 2020. - Vol. 46. - Pp. 1204-1213.

24. Li, A. Evolution process of control-aircraft state interdependent network / A. Li, D.M. Nie, X.X. Wen // Acta Aeronaut. Astronaut. Sin. - 2021. - Vol. 42. - Pp. 481-493.

25. Target-aware recurrent attentional network for radar HRRP target recognition / B. Xu, B. Chen, J. Wan [et al.] // Signal Process. - 2019. - Vol. 155. - Pp. 268-280.

26. Polarimetric HRRP recognition based on ConvLSTM with self-attention / L. Zhang, Y. Li, Y. Wang [et al.] // IEEE Sensors Journal. - 2021. Vol. 21, № 6. - Pp. 7884-7898. - DOI:https://doi.org/10.1109/JSEN.2020.3044314.

27. One-shot HRRP generation for radar target recognition / L. Shi, Z. Liang, Y. Wen [et al.] // IEEE Geoscience and Remote Sensing Letters. - 2022. - Vol. 19. - Pp. 1-5. - Art no. 3504405. - DOI:https://doi.org/10.1109/LGRS.2021.3063241.

28. Koncepciya postroeniya sistemy podderzhki prinyatiya resheniy pri vypolnenii dinamicheskoy rekonfiguracii kompleksa bortovogo oborudovaniya letatel'nogo apparata / V.V. Kos'yanchuk [i dr.] // Teoriya i tehnika radiosvyazi. - 2021. - №1. - S. 5-18.

29. Dynamic Reconfiguration of a Distributed Information-Computer Network of an aircraft / A.M. Solovyov, M.E. Semenov, N.I. Selvesyuk [et al.] // Information Systems and Design. ICID 2021. Communications in Computer and Information Science. - 2021. - Vol. 1539. - DOI:https://doi.org/10.1007/978-3-030-95494-9_10.

30. Model of a Universal Neural Computer with Hysteresis Dynamics for Avionics Problems / A.M. Solovyov, N.I. Selvesyuk, V.V. Kosyanchuk, E.Y. Zybin // Mathematics. - 2022. - Vol. 10. - C. 2390. - DOI:https://doi.org/10.3390/math10142390

31. Deterministic Real-Time Optical Network. / V.M. Novikov, N.I. Selvesyuk, V.L. Olenev [et al.] // Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), St. Petersburg, Russian Federation, 2022. - Pp. 1-10. - DOI:https://doi.org/10.1109/WECONF55058.2022.9803642.

Login or Create
* Forgot password?