STATIC LOADING OF THE POWER HYDRAULIC DRIVE OF THE MANIPULATOR LINKS OF THE TIMBER TRANSPORT MACHINE IN CRITICAL MODE
Abstract and keywords
Abstract (English):
The safe and effective modes of operation of handling equipment of the manipulator type for the forest complex assume a mandatory horizontal position of the frame of the mobile technological machine. In unfavorable production conditions, a forest transport machine may find itself in a critical situation associated with the rotation of the manipulator's support frame relative to the horizon. Correction of this situation can be provided through the use of outriggers. This paper presents the results of a theoretical study of static loads that are characteristic of hydraulic cylinders of outriggers and other elements of the hydraulic manipulator of a forest transport machine with its various configurations. Technologies for loading, moving and unloading forest cargoes can be carried out using special equipment, subject to certain rules. The safe and effective operation modes of manipulator handling equipment assume a mandatory horizontal position of the support-turntable. In unfavorable production conditions, the wood transport machine may find itself in a critical situation related to the rotation of the support and turning frame of the manipulator relative to the horizon. Correction of such position can be insured by use of outriggers. This paper presents the theoretical study results of the static loads, which are characteristic for the hydraulic cylinder of outrigger and other elements of the hydraulic manipulator of a timber transport machine in its various configurations. Balance equations in generalized coordinates are used to describe the equilibrium conditions of the mechanical system under study, which includes a basic vehicle, outriggers, a boom, a handle with a telescopic extension, a grip device and hydraulic drives that ensure their functioning. The rotation angle of support-turning frame in vertical plane, the boom rotation angle, the handle rotation angle and extension of the telescopic part are selected as generalized coordinates. Analytical expressions are obtained for forces on rods of hydraulic cylinders and the working fluid pressure values in piston cavities of hydraulic cylinders in equilibrium state at different position of manipulator links. Calculations based on the obtained formulas can be used in designing technological modes of operation of timber transport machines for carrying out loading and unloading operations of cargoes with the possibility of bringing the support-turntable into a horizontal position.

Keywords:
hydraulic manipulator, forest transport machine, outrigger, hydraulic cylinder, mathematical model
Text
Publication text (PDF): Read Download
References

1. Popikov, P. I. Povyshenie effektivnosti pogruzochno-razgruzochnyh rabot gidromanipulyatorov lesotransportnyh mashin s vyravnivatelyami opornyh platform / P. I. Popikov, P. V. Tanchuk // Voronezhskiy nauchno-tehnicheskiy vestnik. - 2019. - T. 4, № 4(30). - S. 95-100. - URL: https://elibrary.ru/zlqwqi.

2. Imitacionnaya model' avtomobil'nogo manipulyatora, realizovannaya v srede SAPR / P. I. Popikov, V. A. Zelikov, K. A. Yakovlev [i dr.] // Lesotehnicheskiy zhurnal. - 2019. - T. 9, № 4 (36). - S. 142-150. - DOIhttps://doi.org/10.34220/issn.2222-7962/2019.4/16. - URL: https://elibrary.ru/qwhvkf.

3. Lagerev, A. V. Sovremennaya teoriya manipulyacionnyh sistem mobil'nyh mnogocelevyh transportno-tehnologicheskih mashin i kompleksov : Modelirovanie rabochih processov i proektirovanie elementov gidroprivoda / A. V. Lagerev, I. A. Lagerev. - Bryansk, 2019. - 201 s. - ISBN 978-5-9734-0319-5. - URL: https://elibrary.ru/vleqjy.

4. Proektirovanie autrigerov dlya ispytaniy ustoychivosti transportnyh sredstv / V. G. Kryaskov, A. S. Vashurin, A. V. Tumasov, A. A. Vasil'ev // Fundamental'nye issledovaniya; 2017: 3. 40-47. URL: https://elibrary.ru/item.asp?id=29007768.

5. Lagerev, I. A., Lagerev A. V. Povyshenie bezopasnosti ekspluatacii mobil'nyh transportno-tehnologicheskih mashin s manipulyacionnymi sistemami pri rabote s autrigerami. Nauchno-tehnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2017; 3: 296-302. - DOIhttps://doi.org/10.22281/2413-9920-2017-03-03-296-302. - URL: https://elibrary.ru/yqibmt.

6. Sladkova L. A., Grigor'ev P. A., Krylov V. V. Modelirovanie usiliy v oporah mashin osnovnogo tehnologicheskogo naznacheniya na primere strelovogo samohodnogo krana. Nauchno-tehnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2019; 4: 516-522. - DOIhttps://doi.org/10.22281/2413-9920-2019-05-04-516-522. - URL: https://elibrary.ru/lunhus.

7. Seliverstov G. V., Sitnikov S. V., Colin A. S. Razrabotka konstrukciy autrigerov dlya raboty avtokranov v malosvyaznyh gruntah. Mehaniki XXI veku. 2021; 20: 169-172. URL: https://elibrary.ru/item.asp?id=46260333.

8. Modeling of the working energy-saving processes of the hydraulic drive of the lifting mechanism of a forestry manipulator / S. Glushkov, A. Rybak, P. Popikov [et al.] // Forestry engineering journal. - 2021. - Vol. 11, No. 4(44). - P. 88-99. - DOIhttps://doi.org/10.34220/issn.2222-7962/2021.4/8. - URL: https://elibrary.ru/kjpbmt.

9. Analiz raboty gidravlicheskogo manipulyatora lesnoy mashiny s ciklovoy sistemoy upravleniya / E. N. Vlasov, A. V. Sergeevichev, Yu. A. Dobrynin, V. V. Sergeevichev // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. - 2022. - № 238. - S. 99-112. - DOIhttps://doi.org/10.21266/2079-4304.2022.238.99-112. - URL: https://elibrary.ru/bgxkeo.

10. Popikov P. I., Yudin R. V., Tanchuk P. V., Konyuhov A. V. Matematicheskaya model' dinamicheskih rezhimov gidromanipulyatorov lesotransportnyh mashin s vyravnivatelyami opornyh platform. Resources and Technology. 2021; 18(1): 140-155. - DOIhttps://doi.org/10.15393/j2.art.2021.5623.

11. Tanchuk P. V., Popikov P. I., Evsikov I. D. Povyshenie ustoychivosti lesotransportnyh mashin pri primenenii vyravnivateley oporno-povorotnyh ustroystv gidromanipulyatorov // Sovremennyy lesnoy kompleks strany: problemy i trendy razvitiya. - Voronezh, 2022: 62-68. - DOIhttps://doi.org/10.58168/MFCCPTD2022_62-68.

12. Patent № 2762905 C1 Rossiyskaya Federaciya, MPK B66C 23/80, B66C 13/18, A01G 23/00. Gidrosistema mehanizma vyravnivaniya oporno-povorotnogo ustroystva gidromanipulyatora lesotransportnoy mashiny : № 2021116628 : zayavl. 07.06.2021 : opubl. 23.12.2021 / P. I. Popikov, P. V. Tanchuk, V. P. Popikov, R. V. Yudin ; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet imeni G.F. Morozova".

13. Improved inverse kinematics and dynamics model research of general parallel mechanisms / X. Zhang, H. Wang, Y. Rong et al. // Journal of Mechanical Science and Technology. - 2023. - Vol. 37. - № 2. - P. 943-954. - DOI: https://doi.org/10.1007/s12206-023-0134-1.

14. Lagerev I. A., Ostrouhov I. O., Himich A. V. Komp'yuternoe modelirovanie processa poteri obschey ustoychivosti mobil'noy mashiny, osnaschennoy strelovoy manipulyacionnoy sistemoy. 2019; 1: 83-94. - DOIhttps://doi.org/10.22281/2413-9920-2019-05-01-83-94. - URL: https://elibrary.ru/ihfpoq.

15. Golyakevich S. A. Goronovskiy A. R., Mohov S. P. Rezul'taty imitacionnogo modelirovaniya raboty gidravlicheskoy sistemy forvardera v MATLAB / Simulink / Simscape. Trudy BGTU. Seriya 1: Lesnoe hozyaystvo, prirodopol'zovanie i pererabotka vozobnovlyaemyh resursov. 2019; 1(216): 126-131. URL: https://elibrary.ru/item.asp?id=36955660.

16. Zhou, H. A practical method for the deformation of long-stroke hydraulic manipulators in grasping-handling tasks / H. Zhou, X. Zhang, J. Liu // Journal of Field Robotics. - 2023. - Vol. 40. - № 4. - P. 862-878. - DOI: https://doi.org/10.1002/rob.22160.

17. Vihonen, J. Joint-Space Kinematic Model for Gravity-Referenced Joint Angle Estimation of Heavy-Duty Manipulators / J. Vihonen, J. Mattila, A. Visa // IEEE Transactions on Instrumentation and Measurement. - 2018. - Vol. 66. - № 12. - P. 3280-3288. - DOI: https://doi.org/10.1109/TIM.2017.2749918.

18. Hierarchical Decoupling Controller With Cylinder Separated Model of Hydraulic Manipulators for Contact Force/Motion Control / J. Shen, J. Zhang, H. Zong et al. // IEEE/ASME Transactions on Mechatronics. - 2023. - Vol. 28. - № 2. - P. 1081-1092. - DOI: https://doi.org/10.1109/TMECH.2022.3213582.

19. Reducing Amplitude of Load Swinging During Operation of Hydraulic Manipulators of Forest Transport Machines / M. Drapalyuk [et al.] // International Conference on Industrial Engineering. Springer, Cham, 2020. P. 595-608. DOIhttps://doi.org/10.1007/978-3-030-22063-1_63.

20. Model' opredeleniya vremeni navedeniya zahvatno-srezayuschego ustroystva valochno-paketiruyuschih mashin na rastuschee derevo / A. V. Andronov, I. A. Zverev, O. A. Mihaylov, G. S. Taradin // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. - 2021. - № 237. - S. 183-195. - DOIhttps://doi.org/10.21266/2079-4304.2021.237.183-195. - https://elibrary.ru/gnazvg.

21. Borisov A. V., Filippenkov K. D. Modelirovanie dvizheniya zvena peremennoy dliny robota-manipulyatora s ispol'zovaniem elektroprivodov. Voprosy oboronnoy tehniki. Seriya 16: Tehnicheskie sredstva protivodeystviya terrorizmu. 2021; 9-10(159-160): 19-26. Rezhim dostupa: https://elibrary.ru/item.asp?id=47112565.

22. Alhaddad M. Modelirovanie i upravlenie dvizheniem manipulyatora s zamknutoy kinematicheskoy cep'yu i lineynym privodom. Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya. 2021; 3: 168-176. - DOIhttps://doi.org/10.31857/S0002338821020025.

23. Zhang Y., Ding W., Deng H. Reduced Dynamic Modeling for Heavy-Duty Hydraulic Manipulators with Multi-Closed-Loop Mechanisms. IEEE Access. 2020; 8: 101708-101720. DOI:https://doi.org/10.1109/ACCESS.2020.2998058.

24. Hoang, D. Adaptive cooperation of optimal linear quadratic regulator and lumped disturbance rejection estimator-based tracking control for robotic manipulators / D. Hoang, N.T. Pham, X.H. Le et al. // International Journal of Dynamics and Control. - 2023. - DOI: https://doi.org/10.1007/s40435-023-01144-2.

25. Yan Ch., Shi K., Zhang H., Yao Y. Simulation and analysis of a single actuated quadruped robot. Mechanical Sciences. 2022. 13:137-146. DOIhttps://doi.org/10.5194/ms-13-137-2022.

26. Duyun I.A., Gorlov A.S., Duyun T.A. Sovmestnoe modelirovanie dvizheniya parallel'nogo manipulyatora c ispol'zovaniem Adams-Matlab. Vestnik BGTU im. V.G. Shuhova. 2022; 11: 108-119. DOI:https://doi.org/10.34031/2071-7318-2022-7-11-108-119.

27. Nurmi J., Mattila, J. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator. Energies. 2017; 10(5): 647. DOIhttps://doi.org/10.3390/en10050647.

28. Jung, S. Improvement of Tracking Control of a Sliding Mode Controller for Robot Manipulators by a Neural Network / S. Jung // International Journal of Control, Automation and Systems. - 2018. - Vol. 16. - № 2. - P. 937-943. - DOI: https://doi.org/10.1007/s12555-017-0186-z.

29. Bartenev, I. M. Iznashivayuschaya sposobnost' pochv i ee vliyanie na dolgovechnost' rabochih organov pochvoobrabatyvayuschih mashin / I. M. Bartenev, E. V. Pozdnyakov // Lesotehnicheskiy zhurnal. - 2013. - № 3 (11). - S. 114-123. - https://elibrary.ru/rqqpeb.


Login or Create
* Forgot password?