APPLICATION OF SEMICONDUCTOR ELECTRONICS PRODUCTS IN EXTREME CONDITIONS
Abstract and keywords
Abstract (English):
A study of the thermal properties of materials used in semiconductor electronics has been carried out. The dependence of the thermal resistance of GaAs diodes on the temperature increase of the product body is determined. They are determined taking into account the design solutions of the housing design of the REA, which can protect components from extreme, difficult conditions, but they increase the weight and complexity of the system. Materials such as SiC, GaAs, GaN, diamond that can withstand extreme conditions may have advantages that go far beyond their electronic characteristics. An example of the application of GaAs-based diode modules of p-i-n diodes developed by JSC "VZPP-S" is given - a three-phase bridge rectifier made according to the Larionov scheme for an electric generator with a power of up to 2750 watts. A methodology for conducting reliability tests has been developed. Short-term tests for the reliability of diode modules at extreme housing temperatures were carried out. The results of the calculation of the thermal resistance of the junction-housing are presented. To simplify the calculation of the thermal resistance of the junction-housing of the developed module, we will make the following assumptions: the materials used in the design of the module diodes have isotropic thermal conductivity; heat exchange in the internal parts of the structure is carried out only by thermal conductivity; there are no contact resistances between the layers; the power dissipated by the terminals of the diode crystals is negligible compared with the power discharged through the lower base into the heat sink; the side surfaces of the thermal model are insulated; each layer of the same material is homogeneous and has a thermal conductivity coefficient determined by the average temperature of the layer; the influence of the thermal effect of neighboring crystals of the module is not taken into account. The algorithm of stationary thermal regime (method of equivalents) of Appendix N OST 11 0944-96 is chosen as the basis of calculation.

Keywords:
Extreme operating conditions, GaAs diodes, thermal resistance, short-time reliability tests, thermal impedance
References

1. Verhulevskiy, K. Vysokotemperaturnye komponenty Microsemi - nadezhnost' v eksremal'nyh usloviyah ekspluatacii / K. Verhulevskiy // Silovaya elektronika. - 2014. - № 6. - S. 14-20.

2. An Experimental Setup Based on a Printable System for the Acquisition of the Real-Time Electrical Response of Irradiated Semiconductor Devices / A. Quenon, A. Demarbaix, E. Daubie [et al.] // IEEE Transactions on Instrumentation and Measurement. - 2023. - Vol. 72. - Pp. 1-8. - DOI:https://doi.org/10.1109/TIM.2022.3228260.

3. First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice / F. Shan [et al] // Chinese Physics B. - 2022. - Vol. 31. - C. 036104. - DOI:https://doi.org/10.1088/1674-1056/ac16cb.

4. He, J. Comparison between the ultra-wide band gap semiconductor AlGaN and GaN / J. He // IOP Conference Series Materials Science and Engineering. - 2020. - Vol. 738. - C. 012009. - DOI:https://doi.org/10.1088/1757-899X/738/1/012009.

5. Aseev, A.L. Semiconductor Nanostructures for Modern Electronics / A.L. Aseev, A.V. Latyshev, A.V. Dvurechenskii // Advanced Research in Materials Science III. - 2020. - Vol. 310, № 10. - Pp. 65-80. - DOI:https://doi.org/10.4028/www.scientific.net/SSP.310.65.

6. Song, H. Electronic microstructure and thermal conductivity modeling of semiconductor nanomaterials / H. Song, C. Yin, H. Qu // Microelectronics Journal. - 2021. - Vol. 108. - C. 104988. - DOI:https://doi.org/10.1016/j.mejo.2020.104988.

7. Setera, B. Challenges of overcoming defects in wide bandgap semiconductor power electronics / B. Setera, A. Christou // Electronics. - 2022. - Vol. 11(1). - C. 10. - DOI:https://doi.org/10.3390/electronics11010010.

8. Radiation-Tolerant Electronic Devices Using Wide Bandgap Semiconductors / Z. Muhammad [et al.] // Advanced Materials Technologies. - 2022. - Vol. 8(2). - C. 2200539. - DOI:https://doi.org/10.1002/admt.202200539.

9. Derbyshire K. IC Materials For Extreme Conditions. - URL: https://semiengineering.com/ic-materials-for-extreme-conditions (data obrascheniya: 18.01.2023).

10. Rasporyazhenie Pravitel'stva RF ot 17 yanvarya 2020 g. № 20-r O Strategii razvitiya elektronnoy promyshlennosti RF na period do 2030 g. i plane meropriyatiy po ee realizacii.

11. Borisov, P.A. Raschet i modelirovanie vypryamiteley / P.A. Borisov, V.S. Tomasov. - SPb. : SPb GUITMO, 2009. - 169 s.

12. OST 11 0944-96. Mikroshemy integral'nye i pribory poluprovodnikovye. Metody rascheta, izmereniya i kontrolya teplovogo soprotivleniya. - M. : GUP NPP Pul'sar, 1997. - 110 c/

13. Spravochnik po svoystvam veschestv i materialov: plotnost', teploprovodnost', teploemkost', vyazkost' i drugie fizicheskie svoystva. - URL: http://thermalinfo.ru (data obrascheniya: 18.01.2023).

14. Coulter R. NASA Glenn Demonstrates Electronics for Longer Venus Surface Missions. - URL: https://www.nasa.gov/press-release/nasa-glenn-demonstrates-electronics-for-longer-venus-surface-missions (data obrascheniya: 18.01.2023).

15. Luchinin, V. Otechestvennaya ekstremal'naya EKB: karbidokremnievaya industriya SPbGETU "LETI" / V. Luchinin // Nano industriya - 2016. - №3. - S. 78-89.

16. Ispytaniya radioelektronnoy apparatury na stoykost' k vozdeystviyu impul'snogo gamma-izlucheniya v usloviyah povyshennoy temperatury / E.Yu. Bahmatov [i dr.] // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2022. - № 4. - S. 38-41.

17. Vorob'eva, I.V. Osobennosti degradacii spektral'nyh harakteristik SII GAAS-fotodiodov pri neytronnom obluchenii / I.V. Vorob'eva, S.M. Dubrovskih, O.V. Tkachev // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2022. - № 2. - S. 11-18.

18. Kombaev, T.Sh. Ocenka trebovaniy k stoykosti po dozovomu effektu ispol'zuemyh v bortovoy apparature elektroradioizdeliy pri polete kosmicheskogo apparata k saturnu / T.Sh. Kombaev, M.E. Artemov, N.M. Hamidullina // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2022. - № 2. - S. 34-36.

19. Nezamutdinov, F.F. Opredelenie sroka sluzhby radiacionno-stoykoy apparatury dlya zadachi monitoringa morskoy akvatorii / F.F. Nezamutdinov, S.A. Filatov // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2021. - № 4. - S. 24-27.

20. Tapero, K.I. Problemnye voprosy ocenki stoykosti elektronnoy komponentnoy bazy k vozdeystviyu pogloschennoy dozy ioniziruyuschego izlucheniya kosmicheskogo prostranstva / K.I. Tapero // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. - 2021. - № 4. - S. 5-14.

Login or Create
* Forgot password?