Saint Petersburg, St. Petersburg, Russian Federation
Kaliningrad, Russian Federation
Considerable attention has recently been paid to the study of so-called “secondary” acoustic-gravity waves (AGWs) that arise as a result of instability and nonlinear interactions of “primary” wave modes propagating from atmospheric sources, among themselves, and with the mean flow. In this paper, for the first time, the horizontal spatial spectra of primary and secondary AGWs are separated at fixed altitude levels in the middle and upper atmosphere at different time moments, which are simulated using a three-dimensional nonlinear high-resolution model AtmoSym. It is shown that in a short time after switching on the plane wave source at the lower boundary of the model, the spectrum consists of a peak corresponding to primary AGW and quasi-white noise generated by random atmospheric disturbances and the numerical model. Later, secondary peaks appear in the spectra at horizontal wave numbers, which are multiples of the wave numbers of primary AGW. The proposed separation of the spectra of primary and secondary AGWs makes it possible to estimate the relative contribution of secondary AGW at different altitudes, at different times, and with different stability of background temperature and wind profiles in the atmosphere.
acoustic-gravity waves, spectrum, secondary waves, numerical simulation, upper atmosphere, middle atmosphere
1. Alexander M.J., Geller M., McLandress C., Polavarapu S., Preusse P., Sassi F.,Sato K., Eckermann S., Ern M., Hertzog A., et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society. Part A. 2010, vol. 136, iss. 650, pp. 1103-1124. DOI:https://doi.org/10.1002/qj.637.
2. Azeem I., Vadas S.L., Crowley G., Makela J.J. Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory. J. Geophys. Res.: Space Phys. 2017, vol. 122, iss. 3, pp. 3430-3447. DOI:https://doi.org/10.1002/2016JA023659.
3. Bacmeister J.T., Schoeberl M.R. Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci. 1989, vol. 46, pp. 2109-2134.
4. Becker E., Knopfel R., Lubken F.-J. Dynamically induced hemispheric differences in the seasonal cycle of the summer polar mesopause. J. Atmos. Solar-Terr. Phys. 2015, vol. 129, pp. 128-141. DOI:https://doi.org/10.1016/j.jastp.2015.04.014.
5. Chen C., Chu X., Zhao J., Roberts B.R., Yu Z., Fong W., Lu X., Smith J.A. Lidar observations of persistent gravity waves with periods of 3-10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83° S, 166.67° E). J. Geophys. Res:. Space Phys. 2016, vol. 121, pp. 1483-1502. DOI:https://doi.org/10.1002/2015JA022127.
6. Franke P.M., Robinson W.A. Nonlinear behavior in the propagation of atmospheric gravity waves. J. Atmos. Sci. 1999, vol. 56, pp. 3010-3027.
7. Fritts D.C., Vadas S.L., Wan K., Werne J.A. Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, no. 3-5, pp. 247-265. DOI:https://doi.org/10.1016/j.jastp.2005.04.010.
8. Fritts D.C., Wang L., Werne J. Gravity wave-fine structure interactions: A reservoir of small-scale and large-scale turbulence energy. Geophys. Res. Lett. 2009, vol. 36, no. 19, L19805. DOI:https://doi.org/10.1029/2009GL039501.
9. Fritts D.C., Wan K., Werne J., Lund T., Hecht J.H. Modeling the implications of Kelvin-Helmholtz instability dynamics for airglow observations. J. Geophys. Res.: Atmos. 2014, vol. 119, pp. 8858-8871. DOI:https://doi.org/10.1002/2014JD021737.
10. Gassmann A., Herzog H.-J. How is local material entropy production represented in a numerical model? Quarterly Journal of the Royal Meteorological Society. 2015, vol. 141, pp. 854-869. DOI:https://doi.org/10.1002/qj.2404.
11. Gavrilov N.M., Kshevetskii S.P., Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere. Izvestiya. Atmos. Oceanic Phys. 2014, vol. 50, no. 1, pp. 66-72. DOI:https://doi.org/10.1134/S0001433813050046.
12. Gavrilov N.M., Kshevetskii S.P., Koval A.V. Verifications of the high-resolution numerical model and polarization relations of atmospheric acoustic-gravity waves. Geoscientific Model Development. 2015, vol. 8, pp. 1831-1838. DOI:https://doi.org/10.5194/gmd-8-1831-2015.
13. Gavrilov N.M., Kshevetskii S.P., Koval A.V. Decay times of atmospheric acoustic-gravity waves after deactivation of wave forcing. Atmos. Chem. Phys. 2022, vol. 22, pp. 3713-3724. DOI:https://doi.org/10.5194/acp-22-13713-2022.
14. Geller M.A., Alexander M.J., Love P.T., Bacmeister J., Ern M., Hertzog A., Manzini E., Preusse P., Sato K., Scaife A.A., Zhou T. A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate. 2013, vol. 26, iss. 17, pp. 6383-6405. DOI:https://doi.org/10.1175/JCLI-D-12-00545.1.
15. Gossard E.E., Hooke W.H. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. Elsevier Sci. Publ. Co., (Developments in Atmosph. Sci., no. 2) 1975. 470 p.
16. Kikoin I.K. Tables of Physical Quantities. Moscow, Atomizdat Publ., 1976, pp. 272-279.
17. Liu X., Xu J., Liu H., Ma R. Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. J. Geophys. Res.: Atmos. 2008, vol. 1139, no. 8, D08112. DOI:https://doi.org/10.1029/2007JD009136.
18. Lomb N. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, vol. 39, no. 2, pp. 447-462.
19. Miyoshi Y., Fujiwara H. Gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res.: Atmos. 2008, vol. 113, no. 1, D01101. DOI:https://doi.org/10.1029/2007JD008874.
20. Miyoshi Y., Fujiwara H., Jin H., Shinagawa H. A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res.: Space Phys. 2014, vol. 119, iss. 7, pp. 5807-5820. DOI:https://doi.org/10.1002/2014JA019848.
21. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, iss. A12, 1468. DOI:https://doi.org/10.1029/2002JA009430.
22. Scargle J.D. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. Part 1. 1982, vol. 263, pp. 835-853.
23. Smith R.B., Nugent A.D., Kruse C.G., Fritts D., Doyle J.D., Eckermann S.D., Taylor M.J., Dörnbrack A., Uddstrom M., Cooper W., Romashkin P., Jensen J., Beaton S. Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci. 2016, vol. 73, iss. 7, pp. 2581-2869. DOI:https://doi.org/10.1175/JAS-D-15-0324.1.
24. Townsend A.A. Excitation of internal waves by a turbulent boundary layer. Journal of Fluid Mechanics. 1965, vol. 22, pp. 241-252.
25. Townsend A.A. Internal waves produced by a convective layer. Journal of Fluid Mechanics. 1966, vol. 24, pp. 307-319.
26. Vadas S.L., Fritts D.C. The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys. Res. Lett. 2002, vol. 29, no. 20, 1984. DOI:https://doi.org/10.1029/2002GL015574.
27. Vadas S.L., Crowley G. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J. Geophys. Res. 2010, vol. 115, A07324. DOI:https://doi.org/10.1029/2009JA015053.
28. Vadas S.L., Crowley G. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 6652-6678. DOI:https://doi.org/10.1002/2016JA023828.
29. Vadas S.L., Liu H.-L. Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 2593-2617. DOI:https://doi.org/10.1002/jgra.50249.
30. Yiğit E., Medvedev A.S. Heating and cooling of the thermosphere by internal gravity waves. Geophys. Res. Lett. 2009, vol. 36, L14807. DOI:https://doi.org/10.1029/2009GL038507.
31. Yiğit E., Medvedev A.S., Aylward A.D., Hartogh P., Harris M.J. Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J. Geophys. Res. 2009, vol. 114, iss. D7, D07101. DOI: 10.1029/ 2008JD011132.
32. Yu Y., Hickey M.P., Liu Y. A numerical model characterising internal gravity wave propagation into the upper atmosphere. Adv. Space Res. 2009, vol. 44, pp. 836-846. DOI:https://doi.org/10.1016/j.asr.2009.05.014.
33. Zhao J., Chu X., Chen C., Lu X., Fong W., Yu Z., Jones R.M., Roberts B.R., Dörnbrack A. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84° S, 166.69° E), Antarctica: 1. Vertical wavelengths, periods, and frequency and vertical wave number spectra. J. Geophys. Res.: Atmos. 2017, vol. 122, iss. 10, pp. 5041-5062. DOI:https://doi.org/10.1002/2016JD026368.
34. URL: http://atmos.kantiana.ru/language/ru (accessed February 15, 2023).