ROLE OF ALPHA PARTICLES IN PENETRATION OF SOLAR WIND DIAMAGNETIC STRUCTURES INTO THE MAGNETOSPHERE
Abstract and keywords
Abstract (English):
We present the results of studies showing the presence of simultaneous jumps in the density of protons (N2/N1)p and alpha particles (N2/N1)α at the boundaries of diamagnetic structures (DS) of various types both in the quasi-stationary slow solar wind (SW) and in sporadic SW. For DS of quasi-stationary slow SW, associated with streamer belt or chains, in the statistics considered in the paper there is a single linear dependence of (N2/N1)α on (N2/N1)p. This means that these jumps have the same physical nature and are related to diamagnetism at the boundaries of DS of quasi-stationary SW streams of various types. At the front of interplanetary shock waves (ISW), the (N2/N1)α jump is approximately twice as large as the (N2/N1)p jump. This reflects the features of the collective collisionless plasma heating at ISW fronts and requires further studies. A maximum excess (almost 3 times) of the increase in the alpha-particle density (N2/N1)α over the increase in the proton density (N2/N1)p is observed in eruptive prominences. The magnetospheric response in such phenomena as auroras, proton and alpha particle fluxes, geomagnetic field, and geomagnetic pulsations is similar under the influence of DS of various types and ISW. The detected features of the magnetospheric response to the contact with DS of different types and ISW can be interpreted as impulsive passage of the DS matter (plasmoid) into the magnetosphere. The results of studies of the (N2/N1)α jumps can be used as an additional important argument in identifying cases of impulsive penetration of DS into the magnetosphere and in examining the physical nature of these penetrations.

Keywords:
slow solar wind, sporadic solar wind, ratio of alpha particles to protons, magnetospheric response to DS and ISW
Text
Text (PDF): Read Download
References

1. Belian R.D., Gisler G.R., Cayton T.E., Christensen R.A. High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989. J. Geophys. Res. 1992, vol. 97, p.16897.

2. Borrini G., Wilcox J.M., Gosling J.T., Bame S.J., Feldman W.C. Solar wind helium and hydrogen structure near the heliospheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, p. 4565.

3. Borodkova N.L. The impact of large and abrupt changes in the dynamic pressure of wind energy on the Earth’s magnetosphere. Analysis of several events. Cosmic Research. 2010, vol. 48, no. 1, pp. 1-15.

4. Chen J., Fritz T.A., Sheldon R.B., Spence H.E., Spjeldvik W.N., Fennell J.F., Livi S., et al. Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere. J. Geophys. Res. 1998, vol. 103, iss. A1, pp. 69-78. DOI:https://doi.org/10.1029/97JA02246.

5. Dmitriev A.V., Suvorova A.V. Atmospheric effects of magnetosheath jets. Atmosphere. 2023, vol. 14, no. 45, pp.1-15. DOI:https://doi.org/10.3390/atmos14010045.

6. Echim M.M., Lemaire J.F. Laboratory and numerical simulations of the impulsive penetration mechanism. Space Sci. Rev. 2000, vol. 92, pp. 566-601.

7. Eselevich V.G. Diamagnetic structure as a basic of quasi-stationary slow solar wind. Solar-Terr. Phys. 2019, vol. 5, iss. 3, pp. 29-41. DOI:https://doi.org/10.12737/stp-53201904.

8. Eselevich M.V., Eselevich V.G., Some features of the streamer belt in the solar corona and at the Earth’s orbit. Astron. Rep. 2006a, vol. 50, no. 9, pp.748-761.

9. Eselevich M.V., Eselevich V.G. Manifestations of the ray structure of the coronal streamer belt in the form of sharp peaks of the solar wind plasma density in the Earth’s orbit. Geomagnetism and Aeronomy. 2006b, vol. 46, iss. 6, pp.770-782.

10. Eselevich M.V., Eselevich V.G. The double structure of the coronal streamer belt. Solar Phys. 2006c, vol. 235, iss. 1-2, pp. 331-344.

11. Gosling J.T., Asbridge J.R., Bame S.J., Paschmann G., Sckopke N. Observation of two distinct population of bow shock ions in the upstream solar wind. Geophys. Res. Lett. 1978, vol. 5, pp. 957-960.

12. Guglielmi A.V., Potapov A.S. Frequency-modulated ultra-low-frequency wave in near-Earth space. Physics-Uspekhi. 2021, vol. 64, iss. 5, pp. 452-467. DOI:https://doi.org/10.3367/UFNe. 2020.06.038777.

13. Kangas J., Guglielmi A., Pokhotelov O. Morphology and physics of short-period magnetic pulsations (A review). Space Sci. Rev. 1998, vol. 83, pp. 435-512. DOI:https://doi.org/10.1023/A:1005 063911643.

14. Molchanov O.A. Nizkochastotnye volny i indutsirovannye izlucheniya v okolozemnoi plazme [Low-frequency waves and induced radiation in near-Earth plasma]. Moscow, Nauka Publ., 1985, 223 p. (In Russian).

15. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Peculiarities of the influence of the diamagnetic structure of the solar wind on Earth’s magnetosphere. Solar-Terr. Phys. 2017, vol. 3, iss. 4, pp. 44-57. DOI:https://doi.org/10.12737/stp-34201705.

16. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Solar wind diamagnetic structures as a source of substorm-like disturbances. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, pp. 55-67. DOI:https://doi.org/10.1016/j.jastp.2018.10.010.

17. Parkhomov V.A., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Suvorova A.V., Khomutov S.Yu., Tsegmed B., Tero Raita. Magnetospheric response to the interaction with the sporadic solar wind diamagnetic structure. Solar-Terr. Phys. 2021, vol. 7, iss. 3, pp. 11-28. DOI:https://doi.org/10.12737/stp-73202102.

18. Parkhomov V.A., Eselevich V.G., Eselevich M.V. Geoeffectiveness of the eruptive prominence. System Analysis & Mathematical Modeling. 2022, vol. 4, iss. 2, pp. 123-151.

19. Russell C.T., Wang Y.L., Raeder J., Tokar C.T., Smith C.W., Ogilivie K.W., Lazarus A.J., Lepping R.P., et al. The interplanetary shock of September 24, 1998: Arrival to Earth. J. Geophys. Res. 2000, vol. 105, iss. A11, pp. 25143-25154. DOI:https://doi.org/10.1029/2000JA900070.

20. Sapunova O.V., Borodkova N.L., Zastenker G.N., Yermolaev Y.I. Behavior of He++ ions at interplanetary shocks. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 6, pp. 708-713. DOI:https://doi.org/10.1134/S0016793220060122.

21. Sapunova O.V., Borodkova N.L., Zastenker G.N., Yermolaev Y.I. Dynamics of He++ ions at interplanetary and Earth’s bow shocks. Universe. 2022, vol. 8, 516. DOI: 10.3390/ universe8100516.

22. Scholer M. Diffusions at quasi-parallel collisionless shocks: Simulations. Geophys. Res. Lett. 1990, vol. 17, pp. 1821-1824.

23. Scholer M., Terasawa T. Ion reflection and dissipation at quasiparallel collisionless shocks. Geophys. Res. Lett. 1990, vol. 17, pp. 119-122.

24. Trattner K.J., Scholer M. Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett. 1991, vol. 18, no. 10. pp. 1817-1820.

25. Tsegmed B., Potapov A., Baatar N. Daytime geomagnetic pulsations accompanying sudden impulse of solar wind. Proceedings of the Mongolian Academy of Sciences. 2022, vol. 62, no. 02, 242. DOI:https://doi.org/10.5564/pmas.v62i02.2380.

26. Tsurutani B.T., Smith E.J., Anderson R.R., Ogilvie K.W., Scudder J.D., Baker D.N., Bame S.J. Lion roars and nonoscillatory drift mirror waves in the magnetosheath. J. Geophys Res. 1982, vol. 87, iss. A8, 6060. DOI:https://doi.org/10.1029/JA087iA08p06060.

27. Turner J.M., Burlaga L.F., Ness N.F., Lermaire J.F. Magnetic holes in the solar wind. J. Geophys. Res. 1977, vol. 82, no. 13, pp. 1921-1924.

28. Veselovsky I.S., Yermolaev Yu.I. Ionic components of the solar wind. Plasma Heliogeophysics. Vol. 1. Moscow, Fizmatlit Publ., 2008, pp. 313- 325.

29. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y., Riazantseva M.O., Rakhmanova L.S., et al. Drop of solar wind at the end of the 20th century. J. Geophys. Res.: Space Phys. 2021, vol. 126, JA029618. DOI:https://doi.org/10.1029/2021JA029618.

30. Zhou X.-Y., Tsurutani B.T. Rapid intensification and propagation of the dayside aurora: Large-scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 1999, vol. 26, pp. 1097. DOI:https://doi.org/10.1029/1999GL900173.

31. URL: http://wso.stanford.edu/ (date of access April 19, 2023).

32. URL: http://ckp-rf.ru/ckp/3056/ (date of access March 15, 2023).

33. URL: https://www.obsebre.es/en/rapi (date of access March 15, 2023)

34. URL: https://imag-data.bgs.ac.uk/GIN_V1/GINForms2 (date of access April 12, 2023).

35. URL: https://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/ (date of access February 12, 2023).

Login or Create
* Forgot password?