Voronezh State University
UDK 517.938 Теория динамических систем
The article investigates problems related to the control of the dynamics of a system given by the Henon map with a hysteresis component included in it. In particular, possible modifications of the limit set (attractor) of the modified Henon map under hysteresis conditions are studied. The hysteresis element is formalized based on design approach by means of the Preisach model, which is approximated by a system consisting of a finite set of non-ideal relays. To analyze the dynamics, numerical simulation is carried out for various values of the model parameters, which are characterized by chaotic dynamics. For this purpose, a Python script has been developed that simulates the dynamics of the system under hysteresis conditions, and also processes the results to identify dynamic modes. Based on the data obtained, a comparative analysis of strange attractors of the modified and classical Henot mappings is carried out. Next, we study the dynamics depending on the parameters of the modified Henon map. To detect various dynamic regimes, bifurcation diagrams were plotted, the high Lyapunov exponent was calculated based on the Rosenstein algorithm and the 0-1 test was produced depending on the system parameters, and the hysteresis nonlinearity parameter. Established, that hysteresis term regularize dynamics of the system compared to the classical map and changed in the position of bifurcation points in the space of system parameters.
Nonlinear dynamics, chaos, Henon map, hysteresis, Preisach model
1. Scott, A.C. A The Nonlinear Universe: Chaos; Emergence; Life / A. C. Scott - Spinger, 2007 - 271 p.
2. Zaslavskiy, G.M. Vvedenie v nelineynuyu fiziku: ot mayatnika do turbulentnosti i haosa / G.M. Zaslavskiy, R. Z. Sageev. - M. : Nauka, 1988. - 368 s.
3. Kuznecov, S.P. Dinamicheskiy haos (kurs lekciy) / S.P. Kuznecov - Moskva: FIZMATLIT, 2001. - 295 s.
4. Loskutov, A.Yu. Osnovy teorii slozhnyh sistem / A.Yu. Loskutov, A.S. Mihaylov - Izhevsk : Institut komp'yuternyh issledovaniy, 2007. - 620 s.
5. Meleshenko, P.A. Conservative chaos in a simple oscillatory system with non-smooth nonlinearity / P.A. Meleshenko, M.E. Semenov, A.F. Klinskikh // Nonlinear Dynamics. - 2020. - Vol. 101. - Pp. 2523-2540. - DOI:https://doi.org/10.1007/s11071-020-05956-1.
6. Conservative chaos in a class of nonconservative systems: theoretical analysis and numerical demonstrations / S. Cang, A. Wu, R. Zhang [et al.] // International Journal of Bifurcation and Chaos. - 2020. - Vol. 28 (07). - C. 1850087. - DOI:https://doi.org/10.1142/S0218127418500876.
7. Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors / M. Wang, X. Liao, Y. Deng [et al.] // Chaos, Solitons & Fractals. - 2020. - Vol. 130. - P. 109406(1-16). - DOI:https://doi.org/10.1016/j.chaos.2019.109406.
8. Gendelman, O. Mixed global dynamics of forced vibro- impact oscillator with Coulomb friction / O. Gendelman, P. Kravetc, D. Rachinskii // Chaos. - 2019. - Vol. 29. - P. 113116. - DOI:https://doi.org/10.1063/1.5095627.
9. Gonchenko, S.V. O treh tipah dinamiki i ponyatii attraktora / S.V. Gonchenko, D. V. Turaev // Trudy Matematicheskogo instituta imeni V.A. Steklova. - 2017. - T. 297. - S. 133-157. - DOI:https://doi.org/10.1134/S0371968517020078.
10. The discrete fractional duffing system: Chaos, 0-1 test, C0 complexity, entropy, and control / A. Ouannas, A.A. Khennaoui, S.M. Momani [et al.] // Chaos. - 2020. -Vol. 30. - C. 083131. - DOI:https://doi.org/10.1063/5.0005059.
11. Krasnosel'skiy, M.A. Sistemy s gisterezisom / M.A. Krasnosel'skiy, A.V. Pokrovskiy. - M.: Nauka, 1983. - 272 s.
12. Mayergoyz, I.D. Mathematical Models of Hysteresis / I.D. Mayergoyz. - Spinger, 1991. - 207 p.
13. Mayergoy, I. Preisach based storage devices and global optimizers / I. Mayergoy, C. Korman // Mathematical Modelling of Natural Phenomena. - 2020. -Vol. 15(20). - P. 11. - DOI:https://doi.org/10.1051/mmnp/2019051.
14. Weiss, P. de Etude de l|’aimantation initiale enfunction de la temperature / P. Weiss, J. Freundereich // Archives des sciences physiques et naturelles (Geneve). - 1916. - Vol. 42. - P. 449. - DOI:https://doi.org/10.5169/seals-743315.
15. Preisach, F. Uber die magnetische Nackwiking / F. Preisach, Z. Physik. - 1935. - Vol. 94. - Pp. 277-302. - DOI:https://doi.org/10.1007/BF01349418.
16. A model of optimal production planning based on the hysteretic demand curve / M.E. Semenov, S.V. Borzunov, P.A. Meleshenko, A.V. Lapin // Mathematics. - 2022. - Vol. 10(18). - P. 3262. - DOI:https://doi.org/10.3390/math10183262.
17. Stochastic Model of a Hysteresis Converter with a Domain Structure / S.V. Borzunov, M.E. Semenov, N.I. Sel’vesyuk [et al.] // Mathematical Models and Computer Simulations. - 2022. - Vol. 14(2). - Pp. 305-321. - DOI:https://doi.org/10.1134/S207004822202003X.
18. Lacarbonara, W. Nonclassical Responses of Oscillators with Hysteresis / W. Lacarbonara, F. Vestroni // Nonlinear Dynamics. - 2003. - Vol. 32. - Pp. 235-258. - DOI: 10.1023 /A:1024423626386.
19. Sharalampakis, A.E. The response and dissipated energy of Bous - Wen hysteretic model revisited / A.E. Sharalampakis // Archive of Applied Mechanics. -2015. - Vol. 85. - Pp. 1209-1223. - DOI:https://doi.org/10.1007/s00419-014-0937-8.
20. Ikhouane, F. On the Hysteretic Bouc - Wen Model. Part I: Forced Limit Cycle Characterization / F. Ikhouane, J. Rodellar // Nonlinear Dynamics. - 2005. - Vol. 42. - Pp. 63-78. - DOI:https://doi.org/10.1007/s11071-005-0069-3.
21. Iwan, W.D. A distributed-element model for hysteresis and its steady-state dynamic response / W.D. Iwan // Journal of Applied Mechanics. - 1966. -Vol. 33 (4). - Pp. 893-900. - DOI:https://doi.org/10.1115/1.3625199.
22. Lin, C.-J. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model / C.-J. Lin, P.-T. Lin // Computers and Mathematics with Applications. - 2012 - Vol. 64(5). - Pp. 766-787. - DOI:https://doi.org/10.1016/j.camwa.2011.12.015.
23. Coupled inverted pendulums: stabilization problem / M.E. Semenov, A.M. Solovyov, M.A. Popov, P.A. Meleshenko // Archive of Applied Mechanics. - 2018. - Vol. 88. - Pp. 517-524. - DOI:https://doi.org/10.1007/s00419-017-1323-0.
24. Oscillations Under Hysteretic Conditions: From Simple Oscillator to Discrete Sine-Gordon Model / M.E. Semenov, O.O. Reshetova, A.M. Solovyov [et al.] // Springer Proceedings in Physics. 4th. Vol. «Topics in Nonlinear Mechanics and Physics. Selected Papers from CSNDD 2018». - 2019. - Pp. 229-253. - DOI:https://doi.org/10.1007/978-981-13-9463-8_12.
25. Tolkachev, A.V. Diskretnaya model' sinus-Gordona s gisterezisnymi svyazyami / A.V. Tolkachev, P.A. Meleshenko, A.V. Perova // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informacionnye tehnologii. - 2020. - № 4. - S. 29-39. - DOI:https://doi.org/10.17308/sait.2020.4/3202.
26. Semenov M.E., Efficiency of hysteretic damper in oscillating systems / M.E. Semenov, A. M. Solovyov, P.A. Meleshenko, O.O. Reshetova // Mathematical Modelling of Natural Phenomena. -2020. -Vol. 15.- C. 43. - DOI:https://doi.org/10.1051/mmnp/2019053.
27. Avtokolebaniya v sisteme s gisterezisom: metod malogo parametra / M.E. Semenov, O.O. Reshetova, S.V. Borzunov [i dr.] // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informacionnye tehnologii - 2021. - № 4. - S. 37-53. - DOI:https://doi.org/10.17308/sait.2021.4/3797.
28. Dinamika gisterezisno-svyazannyh oscillyatorov Van-Der-Polya: metod malogo parametra / A.L. Medvedskiy, P.A. Meleshenko, V.A. Nesterov [i dr.] // Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya. - 2021. - T. 4, № 4. - S. 7-26. - DOI:https://doi.org/10.31857/S0002338821040107.
29. Unstable oscillating systems with hysteresis: problems of stabilization and control / A.L. Medvedsky, P.A. Meleshenko, V.A. Nesterov [et al.] // Journal of Computer and Systems Sciences International. - 2020. - Vol. 59(4). - Pp. 533-556. - DOI:https://doi.org/10.1134/S1064230720030090.
30. Henon, M. A two-dimenshional mapping with a strange attractor / M. Henon // Communications in Mathematical Physics. - 1976. - Vol. 50. - Pp. 69-77. - DOI:https://doi.org/10.1007/BF01608556.
31. Rosenstein, M.T. A practical method for calculating largest Lyapunov exponents from small data sets / M.T. Rosenstein, J.J. Collins, C.J. De Luca // Physica D: Nonlinear Phenomena. - 1993. - Vol. 65, no. 1. - Pp. 117-134.
32. Gottwald, G.A. The 0-1 Test for Chaos: A review / G.A. Gottwald, I. Melbourne // Chaos Detection and Predictability. Lecture Notes in Physics. - Springer, Berlin, Heidelberg, 2016. - Vol. 915. - 247 p. - DOI:https://doi.org/10.1007/978-3-662-48410-4_7.