DEVELOPMENT OF A QUANTITATIVE INVESTMENT ALGORITHM BASED ON RANDOM FOREST
Abstract and keywords
Abstract (English):
In modern research of the stock market, specialists and scientists are improving algorithms and models, combining them with each other, with strategies and market conditions for stock selection. This paper presents an overview of stock selection models for quantitative investment, which was the basis for the proposed procedure and algorithm of quantitative investment, which allow modeling the investment process. The developed algorithm is based on the CART decision tree and Random Forest, which includes the bagging algorithm. The bagging algorithm divides the training set into several new training sets that build their own calculation models, and then their results are summed and integrated to obtain the final prediction. The randomness of Random Forest comes into play in the process of selecting samples from the training dataset and in selecting features to calculate the best split points. However, the proposed strategy is more stable than other stock selection strategies, is more suitable for building quantitative stock selection models, the proposed algorithm has an advantage over other algorithms, and is also more promising for further development.

Keywords:
Quantitative investment, Random Forest, algorithm, strategy, decision tree
References

1. Olsson, M. Modeling Real-Time Balancing Power Market Prices Using Combined SARIMA and Markov Processes / M. Olsson, L. Soder // IEEE Transactions on power systems. - 2008. - Vol. 23, № 2. - Pp. 443-450. - DOIhttps://doi.org/10.1109/TPWRS.2008.920046

2. Nelson, D.M. Stock Market's Price Movement Prediction wit LSTM Neural Networks / D.M. Nelson, A.C. Pereira, R.A. De Oliveira // Proceedings of the International Joint Conference on Neural Networks. - 2017. - Pp. 1419 - 1426. - DOI:https://doi.org/10.1109/IJCNN.2017.7966019.

3. Tang, J. Stock Market Prediction Based on Historic Prices and News Titles / J. Tang, X. Chen // ICMLT '18: Proceedings of the 2018 International Conference on Machine Learning Technologies. - 2018. - Pr. 29- 34. - DOI:https://doi.org/10.1145/3231884.3231887.

4. Zhang, C. Empirical Research on Multifactor Quantitative Stock Selection Strategy Based on Machine Learning / C. Zhang, H. Tang // 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). - 2022. - Pp. 380-383. - DOI:https://doi.org/10.1109/PRML56267.2022.9882240.

5. Han, J. Effect of dimensionality reduction on stock selection with cluster analysis in different market situations / J. Han, Z. Ge // Expert Systems With Applications. - 2020. - Vol. 147. - Pp. 1-15. - DOI:https://doi.org/10.1016/j.eswa.2020.113226.

6. Li, B. Research on Machine Learning Driven Quantamental Investing / B. Li, X.Y. Shao, Y.Y. Li, // China Industrial Economics. - 2019. - Vol. 8. - Pp. 61-79.

7. A Quantitative Investment Model Based on Random Forest and Sentiment Analysis / M. Chen, Z. Zhang, J. Shen [et al.] // Journal of Physics: Conference Series. - 2020. - Vol. 1575. - C. 012083. - DOI:https://doi.org/10.1088/1742-6596/1575/1/012083.

8. Novikova, T.P. K voprosu vybora metodov prinyatiya upravlencheskih resheniy v social'no-ekonomicheskih sistemah / T.P. Novikova // Al'ternativnye istochniki energii v transportno-tehnologicheskom komplekse: problemy i perspektivy racional'nogo ispol'zovaniya. - 2015. - T. 2, № 1 (2). - S. 286-289. - DOI:https://doi.org/10.12737/14053.

9. Sokolov, S.V. An approach to optimal synthesis in a conflict problem / S.V. Sokolov, I.V. Shcherban // Journal of Computer and Systems Sciences International. - 2003. - T. 42, № 5. - S. 692-697.

10. Sokolov, S.V. Reshenie zadachi nelineynoy parametricheskoy identifikacii stohasticheskih ob'ektov s ispol'zovaniem kriteriya minimuma veroyatnosti oshibki ocenivaniya / S.V. Sokolov, P.A. Kucherenko // Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie. -2009. - T. 52, № 3. - S. 5-12.

11. Sun, L. Analiz metodov ocenki aktivov predpriyatiy v Kitae / L. Sun, T. P. Novikova // Sovremennye aspekty modelirovaniya sistem i processov : sbornik materialov Vserossiyskoy nauchno-prakticheskoy konferencii, Voronezh, 08 fevralya 2021 goda. - Voronezh, 2021. - S. 144-148. - DOI:https://doi.org/10.34220/MAMSP_144-148.

12. U, G. Kolichestvennye metody upravleniya investicionnym processom / G. U, T.P. Novikova // Sovremennye aspekty modelirovaniya sistem i processov : sbornik materialov Vserossiyskoy nauchno-prakticheskoy konferencii, Voronezh, 08 fevralya 2021 goda. - Voronezh, 2021. - S. 155-159. - DOI:https://doi.org/10.34220/MAMSP_155-159.

13. Novikova, T.P. Production of Complex Knowledgebased Systems: Optimal Distribution of Labor Resources Management in the Globalization Context / T.P. Novikova, A.I. Novikov // Globalization and its socio-economic consequences : Proceedings. - Rajecke Teplice, Slovak Republic: University of Zilina, 2018. - P. 2275-2281.

14. Nosova, G. S. Mashinnoe obuchenie na osnove neparametricheskogo i nelineynogo algoritma Random Forest (RF) / G. S. Nosova, A. H. Abdullin // Innovacii. Nauka. Obrazovanie. - 2021. - № 35. - S. 33-39.

15. Letova, M.S. Realizaciya regressionnyh i klassifikacionnyh zadach s pomosch'yu metoda random forest / M.S. Letova // E-Scio. - 2017. - № 8(11). - S. 15-21.

16. Povituhin, S. A. Prognozirovanie s ispol'zovaniem algoritma random forest / S. A. Povituhin, D. R. Nuriev, D. M. Soldatkina // Sovremennye informacionnye tehnologii v obrazovanii, nauke i promyshlennosti : sbornik nauchnyh trudov XIV Mezhdunarodnoy konferencii i XII Mezhdunarodnogo konkursa nauchnyh i nauchno-metodicheskih rabot, Moskva, 01-02 noyabrya 2019 goda. - M., 2019. - S. 113-116.

17. Mitrofanov, S.A. Postroenie sluchaynogo lesa s ispol'zovaniem algoritma geneticheskogo programmirovaniya / S.A. Mitrofanov // Aktual'nye problemy aviacii i kosmonavtiki : sbornik materialov V Mezhdunarodnoy nauchno-prakticheskoy konferencii, posvyaschennoy Dnyu kosmonavtiki, Krasnoyarsk, 08-12 aprelya 2019 goda. V 3-h t. - Krasnoyarsk, 2019. - S. 61-63.

18. Tropina, Zh.N. Kolichestvennye investicii kak novyy metod upravleniya aktivami / Zh.N. Tropina // Kontentus. - 2017. - № 7(60). - S. 51-56.

19. Schetinin, E. Yu. O metodah kolichestvennogo analiza finansovyh pokazateley kompanii v usloviyah vysokoy riskovannosti investiciy / E. Yu. Schetinin // Upravlenie finansovymi riskami. - 2020. - № 2. - S. 108-119. - DOI:https://doi.org/10.36627/2221-7541-2020-2-2-108-119.

20. Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Conference Series. - C. 012117. - DOI:https://doi.org/10.1088/1742-6596/2032/1/012117.

21. Evdokimova, S.A. Primenenie metodov intellektual'nogo analiza dannyh dlya ocenki vneshneekonomicheskoy deyatel'nosti organizacii / S.A. Evdokimova, V.S. Kopylova // Informatika: problemy, metodologiya, tehnologii : cbornik materialov XIX mezhdunarodnoy nauchno-metodicheskoy konferencii, Voronezh, 14-15 fevralya 2019 goda. - Voronezh, 2019. - S. 1118-1121.

22. Stock selection strategy of a-share market based on rotation effect and random forest / S. Wang, Z. Li, J. Zhu [et al.] // AIMS Mathematics. - 2020. - Vol. 5(5). - Pp. 4563-4580. - DOI:https://doi.org/10.3934/math.2020293.

23. Fang, Y. Research on quantitative investment strategies based on deep learning / Y. Fang, J. Chen, Z. Xue // Algorithms. - 2019. - Vol. 12(2). - C. 35. - DOI:https://doi.org/10.3390/a12020035.

24. Wang, X. Research on quantitative investment strategy based on random forest model and risk management / X. Wang, S. Yin // ACM International Conference Proceeding Series. - 2021. - Pp. 2126-2131. - DOI:https://doi.org/10.1145/3482632.3484113.

25. Ensemble model for stock price movement trend prediction on different investing periods / J. Yang, R. Rao, P. Hong, P. Ding // Proceedings - 12th International Conference on Computational Intelligence and Security, CIS 2016. - 2017. - C. 7820478. - Pp. 358-361. - DOI:https://doi.org/10.1109/CIS.2016.86.

Login or Create
* Forgot password?