This work is devoted to the development of technology and special equipment for the cultivation of spontaneously developing functioning endothelial capillary networks in vitro as the basis of artificial cloth-like structures with desired biological properties. It is the scientific and engineering projects RFBR №94-04-13544 «Structural analysis of microvascular bifurcations" and №96-04-50991 «Cell and Tissue Engineering endothelium (formation in endothelial culture in vitro the functioning self-developing capillary networks)." The proposed technology allows the author to form three-dimensional capillary endothelial network around micro-fluidic arrays, immersed in a specially designed dynamic gel. In 2013, the Korean research team under the lea-dership Noo Li Jeon has reproduced, using a similar approach, the phenomenon of self-developing functioning endothelial capillary networks with mass transfer in vitro. It has fully confirmed the validity of the concept pro-posed in the listed projects. Using system of the mathematical modeling Matlab & Simulink and system engi-neering design Cadence Orcad it was developed simulation mathematical model and circuit diagrams experimental reactor modules, it allows to saving considerable financial resources allocated to research and de-velopment of this kind. The resulting model contains 5.4 million basic Simulink blocks and performs more than 7,000 different mathematical functions, reflecting the behavior of devices in stationary and non-stationary conditions. Device control is based on neural network technology. Portable stand-alone microcomputers cyber platform includes microfluidic matrix, generators of microflows liquid phase nutrient medium, life-support systems of endothelial culture system of automatic digital imaging process of angiogenesis, the transmission system of encrypted data over a secure radio, digital control systems. All systems are backed up multiple times, allowing the product to operate in stand-alone mode for a long time (up to a year or more).
endothelial capillary networks in vitro, microfluidic chips, hardware platform, microflows
1. Glotov V.A. Kletochnaya i tkanevaya inzheneriya endoteliya formirovanie v kul´ture endoteliya in vitro funktsioniruyushchikh samorazvivayushchikhsya kapillyarnykh setey. Eksperimental´nye podkhody. Matematicheskaya morfologiya. Elektronnyy matematicheskiy i mediko-biologicheskiy zhurnal. 1997. T. 2, Vyp. 1. URL: http://www.smolensk.ru/user/sgma/MMORPH/N-2-html/3.htm
2. Glotov V.A. Perspektivy polucheniya samorazvivayushchikhsya i funktsioniruyushchikh kapillyarnykh setey in vitro na osnove kletochnykh kul´tur endoteliya. Byulleten´ eksperimental´noy biologii i meditsiny. M.: «RAMN», 2003. S. 64-68.
3. Glotov V.A. Tkanepodobnye obrazovaniya s zadannymi biologicheskimi svoystvami na osnove kletochnoy i tkanevoy inzhenerii in vitro endotelial´nykh kapillyarnykh setey. Trudy X mezhdunarodnoy nauchno-tekhnicheskaya konferentsiya «Fizika i radioelektronika v meditsine i ekologii (FREME’2012)». Kniga 3. Vladimir, 2012. S. 37-41.
4. Glotov V.A., Naydenov E.V., Yakimenko I.V. Ot modelirovaniya angiogeneza IN VITRO k sozdaniyu iskusstvennykh biologicheskikh obrazovaniy s zadannymi svoystvami na osnove tekhnologii samorazvivayushchikhsya kapillyarnykh setey.. Matematicheskaya morfologiya. Elektronnyy matematicheskiy i mediko-biologicheskiy zhurnal. 2013. T. 12, Vyp. 2. URL: http://www.smolensk.ru/user/sgma/MMORPH/N-38-html/glotov/glotov.htm
5. Naydenov E.V. Komp´yuternoe proektirovanie i modelirovanie v SAPR i SKM uzlov mikro-mashinnykh kiberneticheskikh platform dlya kul´tivirovaniya samorazvivayushchikhsya i funktsioniruyushchikh endotelial´nykh kapillyarnykh setey. Materialy dokladov XV mezhdunarodnoy nauchnoy konferentsii studentov i aspirantov «Sistemy komp´yuternoy matematiki i ikh prilozheniya». Vyp. 15. Smolensk: Izd-vo SmolGU, 2014. S. 34-36.
6. Naydenov E.V. Predposylki sozdaniya mikromashinnykh kiberneticheskikh platform dlya kul´tivirovaniya samorazvivayushchikhsya i funktsioniruyushchikh endotelial´nykh kapillyarnykh setey. Vestnik gosudarstvenno meditsinskoy akademii 2014, spetsial´nyy vypusk Materialy II Vserossiyskoy na-uchno-prakticheskoy konferentsii studentov i molodykh uchenykh s mezhdunarodnym uchastiem «Aktual´nye problemy nauki XXI veka». Smolensk: Izd-vo SGMA, 2014. S. 46-48.
7. Naydenov E.V. Razrabotka tekhnicheskoy platformy mnogofunktsional´nogo biologicheskogo reaktora. Tezisy dokladov XX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii studentov i aspirantov «Radioelektronika, elektrotekhnika i energetika». T. 1. M.: Izdatel´skiy dom MEI, 2014. S. 215.
8. Naydenov E.V., Andreykin S.A., Prokof´eva P.A., Yakimenko Yu.I. Kletochnaya i tkanevaya inzheneriya endoteliya IN VIVO i IN VITRO (inzhenernye podkhody). Matematicheskaya morfologiya. Elek-tronnyy matematicheskiy i mediko-biologicheskiy zhurnal. 2013. T. 12, Vyp. 2. URL: http://www.smolensk.ru/user/sgma/MMORPH/N-38-html/naydenov/naydenov.htm
9. Chung B.G., Lee K.H., Khademhosseini A., Lee S. H.. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip. 2012. V. 12(1). P. 45-59.
10. Coquinco A., Kojic L., Wen W., Wang Y.T., Jeon N.L., Milnerwood A.J., Cynader M. A microfluidic based in vitro model of synaptic competition. Molecular and Cellular Neuroscience. 2014. V. 60. P. 43-52.
11. Hoefer I. E., den Adel B., Daemen M.J. Biomechanical factors as triggers of vascular growth. Cardi-ovascular research. 2013. V. 99(2). P. 276-283.
12. Huh D., Hamilton G. A., & Ingber D. E. From 3D cell culture to organs-on-chips. Trends in cell biolo-gy. 2012. V. 21(12). P. 745-754.
13. Jeong G.S., Han S., Shin Y., Kwon G.H., Kamm R.D., Lee S.H., Chung S. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Analytical chemistry. 2011. V. 83(22). P. 8454-8459.
14. Jeong G.S., Kwon G.H., Kang A.R., Jung B.Y., Park Y., Chung S., Lee S. H.. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomedical microdevices. 2011. V. 13(4). P. 717-723.
15. Kim S., Lee H., Chung M., Jeon N. L. Engineering of functional, perfusable 3D microvascular net-works on a chip. Lab on a Chip. 2013. V. 13(8). P. 1489-1500.
16. Lee H., Chung M., Jeon N. L. Microvasculature: An essential component for organ-on-chip systems. MRS Bulletin. 2014. V. 39 (01). P. 51-59.
17. Lee H., Kim S., Chung M., Ki J. H., Jeon N. L. A bioengineered array of 3D microvessels for vascular permeability assay. Microvascular research. 2014. V. 91. P. 90-98.
18. Li D. Encyclopedia of microfluidics and nanofluidics. Springer, 2008.
19. Morgan J.P., Delnero P.F., Zheng Y., Verbridge S.S., Chen J., Craven M., Stroock A.D. Formation of microvascular networks in vitro. Nature protocols. 2013. V. 8(9). P. 1820-1836.
20. Stapor P.C., Azimi M.S., Ahsan T., Murfee W.L. An angiogenesis model for investigating multicellular interactions across intact microvascular networks. American Journal of Physiology-Heart and Circulatory Physiology. 2013. V. 304(2). P. 235-245.
21. Verbridge S.S., Chakrabarti A., DelNero P., Kwee B., Varner J.D., Stroock A.D., Fischbach C. Physico-chemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. Journal of Biomedical Materials Research Part A. 2013. V. 101(10). P. 2948-2956.
22. Yeon J.H., Ryu H.R., Chung M., Hu Q.P., Jeon N. L. In vitro formation and characterization of a per-fusable three-dimensional tubular capillary network in microfluidic devices. Lab on a chip. 2012. V. 12(16). P. 2815-2822.
23. Zervantonakis I.K., Kothapalli C.R., Chung S., Sudo R., Kamm R.D. Microfluidic devices for study-ing heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomi-crofluidics. 2011. V. 5(1). P. 406.
24. Zhang L.G., Khademhosseini A., Webster T. Tissue and Organ Regeneration: Advances in Micro-and Nanotechnology. CRC Press, 2014.
25. Zheng Y., Chen J., Craven M., Choi N.W., Totorica S., Diaz-Santana A., Stroock A.D. In vitro mi-crovessels for the study of angiogenesis and thrombosis. Proceedings of the National Academy of Sciences. 2012. V. 109(24). P. 9342-9347.