Abstract and keywords
Abstract (English):
Ionospheric response to the March 17, 2015 geomagnetic storm has been investigated using simulations of the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP) [Dmitriev et al., 2017; Klimenko et al., 2018]. GSM TIP demonstrates results that do not contradict experimental data. This paper deals with GSM TIP simulated disturbances in the Total Electron Content (TEC) at different longitudes and zonal averages on March 17–23, 2015. At all longitudes, we can observe the existence of a band of TEC positive disturbances, located over the geomagnetic equator, and the formation of an after-storm ionospheric effect that appeared as positive TEC disturbances at midlatitude 3–5 days after the geomagnetic storm main phase. We have analyzed the dependence of disturbances of the thermosphere-ionosphere system (total electron content, n(N2), n(O), zonal electric field, meridional component of the thermospheric wind at a height of 300 km, and electron temperature at a height of 1000 km), calculated by GSM TIP from variations in the geomagnetic activity index AE. The analysis is based on Pearson’s correlation coefficients, presented as maps of the dependence of the correlation coefficient on UT and latitude for selected longitudes and for zonal averaged values. The results suggest that at high latitudes of the Northern and Southern hemispheres the correlation coefficient of TEC disturbances and AE variations is close to 1 at all longitudes in the period from 12 UT to 23 UT. From 9 UT to 12 UT, the minimum value of the correlation coefficient is observed at all latitudes and longitudes. The time intervals of the correlation values are associated with the features of a particular geomagnetic storm, for which, for example, the interval from 12 UT to 23 UT on March 17, 2015 corresponds to the geomagnetic storm main phase. We discuss possible mechanisms for the formation of such a relationship between simulated TEC disturbances and the AE index.

geomagnetic storm, ionospheric disturbances, GSM TIP
Publication text (PDF): Read Download

1. Balan N., Alleyne H., Otsuka Y., Vijaya Lekshmi D., Fejer B.G., McCrea I. Relative effects of electric field and neutral wind on positive ionospheric storms. Earth Planets Space. 2009, vol. 61, no. 4, pp. 439−445.

2. Balan N., Otsuka Y., Nishioka M., Liu J.Y., Bailey G.J. Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res.: Space Phys. 2013, vol. 118, iss. 5, pp. 2660-2669. DOI:

3. Buonsanto M.J. Ionospheric storms: A review. Space Sci. Rev. 1999, vol. 88, pp. 563-601. DOI: 32631.

4. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, Vol. 80, pp. 4204-4214.

5. Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966. vol. 71, pp. 785-803.

6. Deminov M.G., Deminova G.F., Depuev V.K., Depueva A.K. Dependence of the F2-layer critical frequency median at midlatitudes on geomagnetic activity. Solar-Terr. Phys.. 2017, vol. 3, iss. 4. S. 67-73. DOI:

7. Deminov M.G., Deminova G.F., Depuev V.K., Depueva A.Kh. Relation of the Monthly Mean Ionospheric T Index to Solar and Geomagnetic Activity Indices. Geomagnetism and. Aeronomy. 2021, vol. 61, no. 6, pp. 830-835.

8. Dmitriev A.V., Suvorova A.V., Klimenko M.V., Klimenko V.V., Ratovsky K.G., Rakhmatulin R.A., Parkhomov V.A. Predictable and unpredictable ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and on 8-9 March 2008. J. Geophys. Res.: Space Phys. 2017, vol. 122, iss. 2, pp. 2398-2423, DOI:

9. Feshchenko E.Yu., Maltsev Yu.P. Relations of the polar cap voltage to the geophysical activity. Proc. 26 Annual Seminar. “Physics of Auroral Phenomena”. Apatity, 2003, pp. 59-61.

10. Fuller-Rowell T., Codrescu M., Maruyama N., Fredrizzi M., Araujo-Pradere E., Sazykin S., Bust G. Observed and modeled thermosphere and ionosphere response to superstorms. Radio Sci. 2007, vol. 42, iss. 4. DOI:

11. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res.: Space Phys. 1994, vol. 99, iss. A4, pp. 5771-5792. DOI:

12. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, vol. 88, pp. 529-562. DOI:

13. Huba J.D., Maute A., Crowley G. SAMI3_ICON: Model of the ionosphere plasmasphere system. Space Sci Rev. 2017, vol. 212, pp. 731-742. DOI:

14. Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P., Sahai Y., Fagundes P.R., de Jesus R., de Abreu A.J., Vesnin A.M. Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9-14 September 2005. Radio Sci. 2011, vol. 46, iss. 3, RS0D03. DOI:

15. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Ratovsky K.G., Korenkova N.A., Yasyukevich Y.V., Mylnikova A.A., Cherniak I.V. Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26-30 September 2011. Ann. Geophys. 2017. Vol. 35. P. 923-938. DOI:

16. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., Andreeva E.S., Tereshchenko E.D., Vesnin A.M., Korenkova N.A., Gomonov A.D., Vasiliev E.B., Ratovsky K.G. Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick’s Day geomagnetic storm on 17-23 March 2015. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 78-92. DOI:

17. Lu G., Goncharenko L.P., Richmond A.D., Roble R.G., Aponte N. A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res. 2008, vol. 113, iss. A8, A08304. DOI:

18. Mayr H.G., Volland H. Magnetic storm characteristics of the thermosphere. J. Geophys. Res. 1973, vol. 78, no. 13, pp. 2251-2264.

19. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, iss. 4, RG4001. DOI:

20. Mikhalev A.V., Beletsky A.B., Vasilyev R.V., Zherebtsov G.A., Podlesny S.V., Tashchilin M.A., Artamonov M.F. Spectral and photometric characteristics of mid-latitude auroras during the magnetic storm of March 17, 2015. Solar-Terr. Phys. 2018, iss. 4, pp. 42-47. DOI:

21. Namgaladze A.A., Förster M., Yurik R.Y. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model. Ann. Geophys. 2000, vol. 18, pp. 461-477. DOI:

22. Pawlowski D.J., Ridley A.J., Kim I., Bernstein D.S. Global model comparison with Millstone Hill during September 2005. J. Geophys. Res. 2008, vol. 113, iss. A1. A01312. DOI: 10.1029/ 2007JA012390.

23. Pirog O.M., Polekh N.M., Tashchilinet A.V., Romanova E.B., Zherebtsov G.A. Response of ionosphere to the great geomagnetic storm of September 1998: Observation and modeling. Adv. Space Res. 2006, vol. 37, iss. 5, pp. 1081-1087. DOI:

24. Prölss G.W. Ionospheric F-region storms. Handbook of Atmospheric Electmdynamics. CRC Press, 1995, vol. 2, pp. 195-248.

25. Prölss G.W. Ionospheric Storms at mid-latitude: A short review. Midlatitude Ionospheric Dynamics and Disturbances. Washington: American Geophys. Union, 2013. (Geophys. Monograph Ser., 181). DOI:

26. Ratovsky K.G., Klimenko M.V., Klimenko V.V., Chirik N.V., Korenkova N.A., Kotova D.S. After-effects of geomagnetic storms: statistical analysis and theoretical explanation. Solar-Terrestrial Physics. 2018, no. 4, pp. 26-32. DOI:

27. Ratovsky K.G., Klimenko M.V., Yasyukevich Y.V., Klimenko V.V., Vesnin A.M. Statistical analysis and interpretation of high-, mid- and low-latitude responses in regional electron content to geomagnetic storms. Atmosphere. 2020, vol. 11, iss. 12, 1308. DOI:

28. Shpynev B.G., Khabituev D.S., Chernigovskaya M.A. Study of longitudinal irregularities of ionospheric distirbances in the Northern Hemisphere during geomagnetic storms. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2018, vol. 15, no. 5, pp. 241-250. DOI: (In Russian).

29. Sojka J.J., Schunk R.W., Denig W.F. Ionospheric response to the sustained high geomagnetic activity during the March’89 great storm. J. Geophys. Res. 1994, vol. 99, no. A11, pp. 21341-21352.

30. Sugiura M. Hourly values of equatorial Dst for the IGY. Annals of the International Geophysical Year. New York: Elsevier, 1964, vol. 35, pp. 945-948.

31. Suvorova A.V., Dmitriev A.V., Tsai L.-C., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Lazutin L.L. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere. J. Geophys. Res.: Space Phys. 2013, vol. 118, iss.7, pp. 4672-4695. DOI:

32. Vorobjev V.G., Yagodkina O.I. Empirical model of auroral precipitation power during substorms. J. Atmos Solar-Terr. Phys. 2008, vol. 70, pp. 654-662.

33. Yagodkina O.I., Panchenko V.A., Vorobyov V.G., Telegin V.A., Zhbankov G.A. Influence of magnetic activity and solar wind pressure on the mid-latitude ionosphere during a magnetic storm on June 22-23, 2015. Proc. XLIV Annual Seminar “Phys. of Auroral Phenomena”. Apatity, 2021, pp. 163-167. DOI: (In Russian).

34. Zhang S.-R., Zhang Y., Wang W., Verkhoglyadova O.P. Geospace system responses to the St. Patrick’s Day storms in 2013 and 2015. J. Geophys.Res.: Space Phys. 2017, vol. 122, iss. 6, pp. 6901-6906. DOI:

35. Zolotukhina N.A., Polekh N.M., Mikhalev A.V., Beletsky A.B., Podlesny S.V. Peculiarities of 630.0 and 557.7 nm emissions in the main ionospheric trough: March 17, 2015. Solar-Terr. Phys. 2021, vol. 7, iss. 3, pp. 53-67. DOI:

36. URL: (accessed March 30, 2022).

Login or Create
* Forgot password?