ALGORITHMS FOR THE CLASSIFICATION OF TEXT DOCUMENTS, TAKING INTO ACCOUNT PROXIMITY IN THE ATTRIBUTE SPACE
Abstract and keywords
Abstract (English):
Text classification is one of the key issues in text development research, where documents are classified based on information under supervision. Since there is a considerable number of text classification algorithms, it is currently necessary to compile an overview list of them in order to simplify the orientation in the classification tools that are available at the moment. Many text representation schemes and classification/learning algorithms used to classify text documents into predefined categories can be found in the literature, but some of them require detailed analysis and unleashed potential. The purpose of this study is to provide an overview of different text presentation schemes and a comparison of different classifiers that are used to classify text documents into predefined categories. During the study, a comparison method was used as part of the methodology – modern classification approaches based on criteria, algorithms used and time complexity were compared, as well as methods of analysis, modelling and combination. As a result of the study, several algorithms or combinations of algorithms have been proposed for automatic classification of documents as hybrid approaches. The SVM (Support Vector Machine) classifier was recognised as one of the most effective text classification methods when comparing guided machine learning algorithms. It was concluded that SVM captures the inherent characteristics of the data and embeds the structural risk minimisation (SRM) principle, which minimises the upper bound of the generalisation error better than the empirical risk minimisation principle.

Keywords:
Naive Bayes, Rocchio's algorithm, Support Vector Machine, k Nearest Neighbor, LVQ
References

1. Dobrynin, V.Yu. Teoriya informacionno-logicheskih sistem. Informacionnyy poisk : metodicheskie ukazaniya k kursu informacionnogo poiska / V.Yu. Dobrynin. - Sankt-Peterburg, 2002. - 36 s.

2. Dubinskiy, A.G. Harakteristiki effektivnosti informacionnogo poiska v seti Internet / A.G. Dubinskiy // Nauchnyy servis v seti Internet : sbornik tezisov dokladov Vserossiyskoy nauchnoy konferencii. - M. : Izd-vo MGU, 2001. - S. 136-138.

3. Joshi, S.C. Information technology, internet use, and adolescent cognitive development / S.C. Joshi, G. Rose // 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions. - Bengaluru: Institute of Electrical and Electronics Engineers Inc., 2018. - Pp. 22-28. - DOI:https://doi.org/10.1109/CSITSS.2018.8768780.

4. Kogalovskiy, M.R. Perspektivnye tehnologii informacionnyh sistem / M.R. Kogalovskiy. - M. : DMK Press, 2018. - 288 c/

5. Dhar, A. Efficient feature selection based on modified cuckoo search optimization problem for classifying web text documents / A. Dhar, N.S. Dash, K. Roy // Communications in Computer and Information Science. - 2019. - Vol. 1037. - Pp. 640-651. - DOI:https://doi.org/10.1007/978-981-13-9187-3_57.

6. Solton, Dzh. Dinamicheskie bibliotechno-informacionnye sistemy / Dzh. Solton. - M.: Mir, 1979. - 558 s.

7. El Barbary, O.G. Granular information retrieval using neighborhood systems / O.G. El Barbary, A.S. Salama, E.S. Atlam // Mathematical Methods in the Applied Sciences. - 2017. - Vol. 41, No. 15. - Pp. 5737-5753. - DOI:https://doi.org/10.1002/mma.4610.

8. Chugreev, V.L. Model' strukturnogo predstavleniya tekstovoy informacii i metod ee tematicheskogo analiza na osnove chastotno-kontekstnoy klassifikacii : special'nost' 05.13.01 - Sistemnyy analiz, upravlenie i obrabotka informacii (po otraslyam) : dis. … kand. tehn. nauk / Valeriy Leonidovich Chugreev ; Sankt-Peterburgskiy gosudarstvennyy elektrotehnicheskiy universitet. - Sankt-Peterburg, 2003. - 185 s.

9. Rahman, M.M. A personalized group-based recommendation approach for web search in E-learning. A personalized group-based recommendation approach for web search in E-learning / M.M. Rahman, N.A. Abdullah // IEEE Access. - 2018. - Vol. 6, № 25. - 34166-34178. - DOI:https://doi.org/10.1109/ACCESS.2018.2850376

10. Jansen, B.J. Real life, real users, and real needs: a study and analysis of user queries on the web / B.J. Jansen, A. Spink, T. Saracevic // Information Processing and Management. - 2000. - Vol. 36, № 2. - Pp. 207-227. - DOI:https://doi.org/10.1016/S0306-4573(99)00056-4.

11. Tunga, B. Digital image decomposition and contrast enhancement using high-dimensional model representation / B. Tunga, A. Kocanaogullari // Signal, Image and Video Processing. - 2018. - Vol. 12, № 2. - Pp. 299-306. - DOI:https://doi.org/10.1007/s11760-017-1158-8

12. Huang, H. Web service based intelligent search on legal documents / H. Huang, R. Wong // ACSW 2019: Proceedings of the Australasian Computer Science Week Multiconference. - 2019. - № 1. - S. 50. -DOI:https://doi.org/10.1145/3290688.3290710.

13. Meng, M. Building efficient and effective metasearch engines / M. Meng, C. Yu, K.-L. Liu // ACM Computing Surveys. - 2002. - Vol. 34, № 1. - Pp. 255-261. - DOI:https://doi.org/10.1145/505282.505284.

14. Ding, J. Big data analyses of zeronet sites for exploring the new generation darkweb / J. Ding, X. Guo, Z. Chen // ICSIM '20: Proceedings of the 3rd International Conference on Software Engineering and Information Management. - 2020. - Pp. 46-52. - DOI:https://doi.org/10.1145/3378936.3378981.

15. He, R. Graphical models with content relevance for crucial date detection in social media event / R. He, D. Ding // Lecture Notes in Computer Science. - 2018. - Vol. 11062. - Pp. 413-421. - DOI:https://doi.org/10.1007/978-3-319-99247-1_37.

16. Formalization of document management using multilevel graph model of information processing / M.N. Krasnyanskiy, D. Obukhov, E.M. Solomatina [et al.] // 18th International Multidisciplinary Scientific GeoConference SGEM 2018. - 2018. - Pp. 413-420. - DOI:https://doi.org/10.5593/sgem2018/2.1/S07.052.

17. Anand, C. Comparative study of web page ranking algorithms / C. Anand, S. Kumar // International Journal of Advanced Science and Technology. - 2020. - Vol. 29, № 5. - Pp. 322-331.

18. Tang H., Byna S., Dong B., Koziol Q. Parallel query service for object-centric data management systems // 34th IEEE International Parallel and Distributed Processing Symposium Workshops. - 2020. - Pp. 406-415. - DOI:https://doi.org/10.1109/IPDPSW50202.2020.00076.

19. An analysis and classification of public information security data sources used in research and practice / C. Sauerwein, I. Pekaric, M. Felderer, R. Breu // Computers and Security. - 2019. - № 82. - Pp. 140-155. - DOI:https://doi.org/10.1016/j.cose.2018.12.011.

20. Sebastiani, F. Text categorization / F. Sebastiani // Text Mining and Its Applications. - Southampton: WIT Press, 2005. - P. 109-129. - DOI:https://doi.org/10.2495/978-1-85312-995-7/04.

21. Berger, A. Statistical Machine Learning for Information Retrieval / A. Berger. - Peatsburg: Carnegie Mellon University, 2001.

22. The materials simulation toolkit for machine learning (MAST-ML): An automated open-source toolkit to accelerate data-driven materials research / R. Jacobs, T. Mayeshiba, B. Afflerbach [et al.] // Computational Materials Science. - 2020. - Vol. 176. - S: 109544. - DOI:https://doi.org/10.1016/J.COMMATSCI.2020.109544.

23. Baker, L.D. Distributional clustering of words for text classification / L.D. Baker, A.K. McCallum // 21st ACM International Conference on Research and Development in Information Retrieval. - 1998. - Pp. 96-103. - DOI:https://doi.org/10.1145/290941.290970.

24. Naive bayes text categorization algorithm based on TF-IDF attribute weighting / F. Jiang, Z. Zhang, P. Chen, Y. Liu // 2nd International Conference on Computer Science and Artificial Intelligence. - 2018. - Pp. 521-525. - DOI:https://doi.org/10.1145/3297156.3297256.

25. Dang, E.K.F. Context-dependent feature values in text categorization / E.K.F. Dang, R.W.P. Luk, J. Allan // International Journal of Software Engineering and Knowledge Engineering. - 2020. - Vol. 30, No. 9. - P. 1199-1219. - DOI:https://doi.org/10.1142/S021819402050031X.

26. Huang, Y. An analytical model for solving generalized interval eigenvalue problem / Y. Huang, Y. Liu // Applied Mathematical Modelling. - 2018. - № 61. - P. 18-28. - DOI:https://doi.org/10.1016/j.apm.2018.04.007.

Login or Create
* Forgot password?