ALGORITHM FOR ANALYZING THE CUSTOMER BASE OF A TRADE ORGANIZATION
Abstract and keywords
Abstract (English):
The purpose of the work is to develop an algorithm for analyzing the customer base of a trade organization, which allows customers to be divided into groups depending on their activity. In the future, by taking into account the preferences of each group of clients, it will be possible to increase the efficiency of working with clients. The authors use ABC-XYZ analysis and clustering methods in the algorithm, which make it possible to determine the most active customers who bring in the most profit. The ABC-XYZ analysis method divides buyers into groups depending on the amount and frequency of purchases, clustering methods combine the original objects into clusters based on similar characteristics. According to the algorithm presented in the work, RapidMiner Studio system has developed scenarios for analyzing the client base of a trade organization. The ABC-XYZ analysis method showed buyers who are worth paying special attention to, since their absence will lead to losses. The cluster analysis used the k-means methods, which divided the initial data set into 3 clusters, g-means and Expectation-Maximization algorithm, in which the number of clusters was not specified. The following characteristics were used: the average amount of purchases per year, the average number of unique products purchased per year, the average number of purchases per year, the number of years that the buyer cooperates with the store, the year of the last purchase. The g-means method divided the buyers into 3 clusters, and the EM algorithm into 10. The combined ABC-XYZ analysis and k-means algorithm showed the best results of customer separation, allowing an individual approach to work with customers of each group.

Keywords:
Data mining, combined ABC-XYZ analysis, clustering methods, k-means algorithm, Expectation-Maximization algorithm, RapidMiner Studio
References

1. González, R.G. An intelligent decision support system for production planning based on machine learning / R.G. González, J.M. Gonzalez-Cava, J.A. Méndez Pérez // Journal of Intelligent Manufacturing. - 2020. - № 31(5). - Pp. 1257-73. - DOI:https://doi.org/10.1007/s10845-019-01510-y.

2. Chu, C.Y.C. E-commerce mercantilism-practices and causes / C.Y.C. Chu, P.-C. Lee // Journal of International Trade Law and Policy. - 2020. - Vol. 19. - Pp. 51-66. -DOI:https://doi.org/10.1108/JITLP-08-2019-0054.

3. Adiguzel, Z. Investigation of the effects of strategic management and innovation on performance together with technological capabilities / Z. Adiguzel // Contributions to Management Science. - 2020. - Pp. 69-98. - DOI:https://doi.org/10.1007/978-3-030-50131-0_4.

4. Novikova, T.P. Production of complex knowledge-based systems: optimal distribution of labor resources management in the globalization context / T.P. Novikova, A.I. Novikov // Globalization and Its Socio-Economic Consequences. Rajecke Teplice, Slovakia: University of Zilina, 2018. - Pp. 2275-2281.

5. Novikova, T.P. K voprosu vybora metodov prinyatiya upravlencheskih resheniy v social'no-ekonomicheskih sistemah / T.P. Novikova // Al'ternativnye istochniki energii v transportno-tehnologicheskom komplekse: problemy i perspektivy racional'nogo ispol'zovaniya. - 2015. - T. 2, № 1 (2). - S. 286-289. - DOI:https://doi.org/10.12737/14053.

6. Green supply chain collaborative innovation, absorptive capacity and innovation performance: Evidence from China / J. Hong, R. Zheng, H. Deng, Y. Zhou // Journal of Cleaner Production. - 2019. - Vol. 241. - P. 118377. - DOI:https://doi.org/10.1016/j.jclepro.2019.118377.

7. Piterska, V. Development of the methodological proposals for the use of innovative risk-based mechanism in transport system / V. Piterska, A. Shakhov // International Journal of Engineering and Technology. - 2018. - Vol. 7, № 4.3. - Pp. 257-261. - DOI:https://doi.org/10.14419/ijet.v7i4.3.20129.

8. Ham, C. Pro-poor enterprises and the base-of the pyramid concept: Learning from natural plant product ventures in South Africa / C. Ham, W. Thomas // Sustainability Challenges and Solutions at the Base of the Pyramid: Business, Technology and the Poor; Taylor and Francis: Department of Forest and Wood Science, Stellenbosch University, South Africa, 2017. - Pp. 116-131. - ISBN 9781351279871.

9. Randall, D. An exploration of opportunities for the growth of the fair trade market: Three cases of craft organizations / D. Randall // Journal of Business Ethics. - 2005. - Vol. 56. - Pp. 55-67. - DOI:https://doi.org/10.1007/s10551-004-1756-6.

10. Connolly, J. Identifying fair trade in consumption choice / J. Connolly, D. Shaw // Journal of Strategic Marketing. -2006. - Vol. 14 (4). - Pp. 353-368. - DOI:https://doi.org/10.1080/09652540600960675.

11. Novikova, T.P. The choice of a set of operations for forest landscape restoration technology / T.P. Novikova // Inventions. - 2022. - T. 7, № 1. - C. 1. - DOI:https://doi.org/10.3390/inventions7010001

12. Novikova, T.P. Razrabotka algoritma i modeli funkcionirovaniya informacionnoy sistemy dlya malogo sel'skohozyaystvennogo predpriyatiya / T.P. Novikova, T.V. Novikova, A.I. Novikov // Modelirovanie sistem i processov. - 2020. - T. 14, № 3. - S. 53-58. - DOI:https://doi.org/10.12737/2219-0767-2021-13-4-53-58.

13. Thomas, J.S. Econometric analysis of customer retention in an aviation trade organization / J.S. Thomas // Transportation Research Record. - 1997. - Pp. 33-40. - DOI:https://doi.org/10.3141/1567-05.

14. Impact of the World Trade Organization TRIPS Agreement on the pharmaceutical industry in Thailand / S. Supakankunti, W.S. Janjaroen, O. Tangphao [et al.] // Bulletin on the World Health Organisation. - 2001. - Vol. 79 (5). - Pp. 461-470. - DOI:https://doi.org/10.1590/S0042-96862001000500013.

15. Novikova, T.P. Razrabotka i issledovanie bazovoy modeli PERT dlya planirovaniya rabot po proektu / T.P. Novikova, S.A. Evdokimova, A.I. Novikov // Modelirovanie sistem i processov. - 2021. - T. 14, № 4. - S. 75-81. - DOI:https://doi.org/10.12737/2219-0767-2021-14-4-75-81.

16. Graham, D. “Painful and unprecedented” - Suppliers slammed by steel costs / D. Graham // Textile Rental. - 2007. - Vol. 90. - Pp. 84-89.

17. Evdokimova, S.A. Issledovanie tovarnogo assortimenta s pomosch'yu ABC-XYZ-analiza v sisteme Deductor / S.A. Evdokimova, A.V. Zhuravlev // INFORMATIKA: PROBLEMY, METODY, TEHNOLOGII : sbornik materialov XXI Mezhdunarodnoy nauchno-metodicheskoy konferencii. - Voronezh, 2021. - S. 1142-1146.

18. Fang, C. Research and application of improved clustering algorithm in retail customer classification / C. Fang, H. Liu // Symmetry. - 2021. - № 13(10). - S. 1789. - DOI:https://doi.org/10.3390/sym13101789.

19. Stojanović, M. The significance of the integrated multicriteria ABC-XYZ method for the inventory management process / M. Stojanović, D. Regodić // Acta Polytechnica Hungarica. - 2017. - № 14. - Pp. 29-48. - DOI:https://doi.org/10.12700/APH.14.5.2017.5.3.

20. Belyaeva, M.S. Povyshenie konkurentosposobnosti predprinimatel'skoy struktury na osnove kombinirovannogo ABC/XYZ i klasternogo analiza tovarnoy nomenklatury / M.S. Belyaeva // Regional'naya ekonomika: teoriya i praktika. - 2021. - T. 19, № 9 (492). - S. 1789-1810. - DOI:https://doi.org/10.24891/re.19.9.1789.

21. Chindyana, M. Segmentation of tourist interest on tourism object categories by comparing PSO K-means and DBSCAN method / M. Chindyana, L.A. Wulandhari // Revue d'Intelligence Artificielle. - 2021. - №35(1). - Pp. 23-37. - DOI:https://doi.org/10.18280/ria.350103.

22. Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Conference Series. "International Conference on IT in Business and Industry, ITBI 2021" - 2021. - S. 012117. - DOI:https://doi.org/10.1088/1742-6596/2032/1/012117.

23. Sampson, S.E. Modes of customer co-production for international service offerings / S.E. Sampson, R.B. Money // Journal of Service Management. - 2015. - Vol. 26 (4). - Pp. 625-647. - DOIhttps://doi.org/10.1108/JOSM-01-2015-0033.

24. Benson, E. Fair trade consumption from the perspective of US Baby Boomers / E. Benson, K.Y.H. Connell // Social Responsibility Journal. - 2014. - № 10. - Pp. 364-382. - DOI:https://doi.org/10.1108/SRJ-08-2012-0094.

25. Understanding internet banking: An empirical investigation of potential customers’ acceptance in mainland China / W. Ke, B. Shao, Z. Lin, L. Yang // Proceedings of the 13th Americas Conference on Information Systems, AMCIS 2007; School of Business, Clarkson University, PO Box 5765, Potsdam, NY 13699-5765, United States. - 2007. - Vol. 5. - Pp. 3142-3153.

26. Evdokimova, S.A. Primenenie algoritmov klasterizacii dlya analiza klientskoy bazy magazina / S.A. Evdokimova, A.V. Zhuravlev, T.P. Novikova // Modelirovanie sistem i processov. - 2021. - T. 14, № 2. - S. 4-12. - DOI:https://doi.org/10.12737/2219-0767-2021-14-2-4-12.

27. Akbar, Z. Discovering knowledge by comparing silhouettes using K-means clustering for customer segmentation / Z. Akbar, J. Liu, Z. Latif // International Journal of Knowledge Management. - 2020. - №16(3). - Pp. 70-88. - DOI:https://doi.org/10.4018/IJKM.2020070105.

28. Clemes, M.D. Customer switching behaviour in the Chinese retail banking industry / M.D. Clemes, C. Gan, D. Zhang // International Journal of Bank Marketing. - 2010. - Vol. 28 (7). - Pp. 519-546. - DOI:https://doi.org/10.1108/02652321011085185.

29. Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm / Y. Li, X. Chu, D. Tian [et al.] // Applied Soft Computing. - 2021. - T. 113. - C. 107924. - DOI:https://doi.org/10.1016/j.asoc.2021.107924.

30. Deng, Y. A study on e-commerce customer segmentation management based on improved K-means algorithm / Y. Deng, Q. Gao // Information Systems and e-Business Management. - 2020. - № 18(4). - Pp. 497-510. - DOI:https://doi.org/10.1007/s10257-018-0381-3.

31. Al-Somali, S. Theories and factors affecting electronic commerce adoption in small and medium enterprises (SMES): A review / S. Al-Somali, R. Gholami, B. Clegg // E-business In The 21st Century: Realities, Challenges And Outlook; World Scientific Publishing Co.: Operations &Information Management Group, Aston Business School, United Kingdom, 2009. - Pp. 301-330. - ISBN 9789812836755.

32. Integration K-Means clustering method and elbow method for identification of the best customer profile cluster / M.A. Syakur, B.K. Khotimah, E.M.S. Rochman, B.D. Satoto // IOP Conference Series: Materials Science and Engineering. - 2018. - Vol. 336. - C. 012017. - DOI:https://doi.org/10.1088/1757-899X/336/1/012017.

Login or Create
* Forgot password?