Tomsk, Russian Federation
GRNTI 76.33 Гигиена и эпидемиология
GRNTI 76.03 Медико-биологические дисциплины
OKSO 31.06.2001 Клиническая медицина
OKSO 31.08.08 Радиология
OKSO 32.08.12 Эпидемиология
OKSO 14.04.02 Ядерные физика и технологии
BBK 534 Общая диагностика
BBK 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
TBK 5712 Медицинская биология. Гистология
TBK 5734 Медицинская радиология и рентгенология
TBK 6212 Радиоактивные элементы и изотопы. Радиохимия
TBK 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
Purpose Analyze the various methods for determining the monitor doses in neutron therapy using the U-120 cyclotron and to choose the monitoring method that provides the highest accuracy in dose delivery to the tumor. Material and methods The distributions of the absorbed dose of the therapeutic beam from the U-120 cyclotron were measured in a tissue-equivalent medium using the differential method, in which two ionization chambers with different sensitivity to neutron radiation were used. A comparison of radiation effects on tissues using various techniques of determining the monitor doses was made. The linear-quadratic model was used to assess responses to ionizing radiation. Results Dosimetry studies revealed that the therapeutic beam of the U-120 cyclotron contains concomitant gamma radiation, the contribution of which to the total neutron-photon dose increases with increasing depth of the irradiated medium. The presence of gamma radiation in the neutron beam dictate the need to find the correct method for monitoring neutron therapy. A comparison of radiation effects on the tumor tissue using different techniques of determining the monitor doses was made. It was found that at equal neutron-photon doses, the neutron dose in the tumor changed depending on its depth. It can lead to an incorrect conclusion about the effectiveness of neutron therapy depending on a single dose as well as in relation to various dose fractionation schedules. Conclusion The analysis of the results obtained showed that the problem can be most accurately solved using a technique in which the monitor coefficient and monitor doses are determined from the distribution of the neutron dose, taking into account the contribution of the gamma radiation dose to the total neutron-photon dose.
neutron therapy, monitor doses, linear quadratic model
1. Zyryanov B. N., Afanas'ev S. G., Zav'yalov A. A., Musabaeva L. I. Intraoperacionnaya luchevaya terapiya. - Tomsk. 1999. 277 s.
2. Musabaeva L. I., Zhogina Zh. A., Slonimskaya E. M., Lisin V. A. Sovremennye metody luchevoy terapii raka molochnoy zhelezy. - Tomsk. 2003. 199 c.
3. Musabaeva L.I., Lisin V.A., Starceva Zh.A., Gribova O.V. i soavt. Neytronnaya terapiya na ciklotrone U-120 // Med. radiol. i radiac. bezopasnost'. 2013. T. 58. № 2. S. 53-61.
4. Wagner F. M., Specht H., Loeper-Kabasakal B., Breitkreutz H. Sovremennoe sostoyanie terapii bystrymi neytronami // Sibirskiy onkologicheskiy zhurnal. 2015. № 6. S. 5-11.
5. Gulidov I. A., Mardynskiy Yu. S., Cyb A. F., Sysoev A. S. Neytrony yadernyh reaktorov v lechenii zlokachestvennyh novoobrazovaniy. - Obninsk: Izd-vo MRNC RAMN. 2001. 132 s.
6. Vazhenin A. V., Rykovanov G. N. Ural'skiy centr neytronnoy terapii: istoriya sozdaniya, metodologiya, rezul'taty rabot. - M.: Izdatel'stvo RAMN. 2008. 124 s.
7. Kandakova E. Yu. Kliniko-eksperimental'noe obosnovanie povysheniya effektivnosti sochetannoy fotonno-neytronnoy terapii opuholey golovy i shei.- Doktorskaya dissertaciya. Moskva. 2015. 197 s.
8. Shal'nov M. I. Tkanevaya doza neytronov. -M: Atomizdat. 1960. 218 s.
9. Bregadze Yu. I. Metodika vypolneniya izmereniy moschnosti pogloschennoy dozy neytronnogo izlucheniya ionizacionnym metodom. - Moskva. 1989. 20 s.
10. Lisin V. A., Gorbatenko A. I. Geterogennye ionizacionnye kamery dlya dozimetrii smeshannyh poley bystryh neytronov i gamma-izlucheniya.- Pribory i tehnika eksperimenta. 1989. № 6. S.71-73.
11. Kondratjeva A.G., Kolchuzhkin A.M., Lisin V.A., Tropin I.S. Properties of Absorbed Dose distribution in heterogeneous Media // Journal of Physics: Conference Series. 2006, T. 41, № 1, S. 527-530.
12. Lisin V. A. Ocenka parametrov lineyno-kvadratichnoy modeli v neytronnoy terapii// Medicinskaya fizika. 2010. T. 48. № 4. S. 5 - 12.
13. Lisin V. A. Lineyno-kvadratichnaya model' v planirovanii neytronnoy terapii na ciklotrone U-120 // Med. radiol. i radiac. bezopasnost'. 2018, T. 63. № 5. S. 41 - 47.
14. Lisin V. A. O vybore sootnosheniya doz neytronov i fotonov pri neytronno-fotonnoy terapii zlokachestvennyh novoobrazovaniy. // Medicinskaya radiologiya i radiacionnaya bezopasnost', 2019. T. 64. № 6. S. 57-63.
15. Lisin V. A., Musabaeva L. I. Kolichestvennaya ocenka luchevyh reakciy opuholey s uchetom ih radiobiologicheskih parametrov. // Med. radiologiya. 1983. T. 28. C. 65-69.