Russian Federation
Russian Federation
Russian Federation
Russian Federation
GRNTI 76.33 Гигиена и эпидемиология
GRNTI 76.03 Медико-биологические дисциплины
OKSO 31.06.2001 Клиническая медицина
OKSO 31.08.08 Радиология
OKSO 32.08.12 Эпидемиология
OKSO 14.04.02 Ядерные физика и технологии
BBK 534 Общая диагностика
BBK 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
TBK 5712 Медицинская биология. Гистология
TBK 5734 Медицинская радиология и рентгенология
TBK 6212 Радиоактивные элементы и изотопы. Радиохимия
TBK 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
Purpose: Analysis of the current regulatory and methodological framework on control of doses from intake of 14C for the personnel and the public living in the control area of the nuclear power plant (NPP). Identifying the most informative methods of controlling radiation impact of 14C on a human being. Material and methods: Research literature on radiation impact of naturally occurring 14C; 14C entering the environment as a result of nuclear weapon tests; and 14C entering workplaces and the control area of NPP has been reviewed. Dose coefficients and other radiation characteristics of 14C provided in IAEA, ICRP and UNSCEAR publications have been summarized. Results: According to UNSCEAR, annual radiation burden caused by global 14C is the highest one (about 80 %) among radiation burdens associated with four critical naturally occurring cosmogenic radionuclides: 3H (0.01 µSv/year), 7Be (3.0 µSv/year), 14C (12 µSv/year) and 24Na (0.2µSv/year). The main way of 14C intake is the alimentary one when this isotope enters the human body with food. Dose from this kind of intake of global 14C can reach 40 µSv. The annual dose caused by aerogenic (inhalation) way of intake of global 14C does not exceed 1 µSv. The most informative methods of dose assessment for the personnel of NPP and the public living in the control area involve measurement of content of 14C in top soil, vegetation and food products. Conclusions: Significant amount of 14C enters the environment within the control area during operation of NPP, which causes the public radiation dose exceeding the dose from global 14C. The most informative objects characterizing content of technogenic 14C in the control area of NPP are top soil (humus) and vegetation. The liquid scintillation spectrometry involves sample preparation by burning of samples in oxygen with capturing of generated carbon dioxide and its transfer into organic solvent. This is the most technologically viable method for mass control of 14C content in samples of top soil and vegetation.
radiation safety, carbon-14, control of specific activity, internal dose, soil, vegetation
1. Rublevskiy V.P., Yacenko V.N. Osobennosti radiacionnogo i biologicheskogo deystviya 14S na zhivye organizmy i opasnost' ego nakopleniya v biosfere Zemli // Atomnaya energiya. 2018. T.12, № 5. S. 301-306.
2. Rublevskiy V.P., Yacenko V.N., Chanyshev E.G. Rol' ugleroda-14 v tehnogennom obluchenii cheloveka / Pod red. Kochetkova O.A. M.: IzdAT. 2004. 197 s. ISBN 5-86656-160-3.
3. Ivanov V.I., Lyscov V.N. Osnovy mikrodozimetrii. M.: Atomizdat. 1979. 192 s.
4. Timofeev L.V., Maksimov A.A., Kochetkov O.A. i dr. K voprosu o doze tritiya na kletochnom urovne // Med. radiologiya i radiacionnaya bezopasnost'yu. 2020 (v pechati).
5. Panchenko S.V., Linge I.I. i dr. Radioekologicheskaya obstanovka v regionah raspolozheniya predpriyatiy Rosatoma / Pod red. Linge I.I., Krysheva I.I. M.: SAM poligrafist. 2015. 296 s.
6. UNSCEAR 2008. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly with Scientific Annexes. New York: United Nations Publication, 2010. V.I. ISBN 978-92-1-142274-0.
7. Vasilenko I.Ya., Bugryshev P.F., Istomina A.G. i dr. Voprosy radiacionnoy opasnosti 14C // Atomnaya energiya. 1980. T.49, № 5. S. 299-303.
8. Carbon-14 and the Environment. IRSN, 2012. www.irsn.fr.
9. Vasilenko I.Ya., Osipov V.A., Rublevskiy V.P. Radioaktivnyy uglerod. Priroda. 1992. № 12. S. 59-65.
10. Garnier-Laplace J., Roussel-Debet S., Calmon P. Modélisation des Transferts du Carbone 14, Emis par les Réacteurs a Eau Pressurisée en Fonctionnement Normal, Dans l’Environnement Proche du Site. Rapport IPSN/DPRE/SERE 98/007. IRSN, Cadarache. 1998.
11. Nazarov E.I., Ekidin A.A., Vasil'ev A.V. Ocenka postupleniya ugleroda-14 v atmosferu, obuslovlennogo vybrosami AES // Izv. vuzov. Fizika. 2018. T.61, № 12-2(732). S. 67-73.
12. Setting Authorized Limits for Radioactive Discharges: Practical Issues to Consider. IAEA-TECDOC-1638. Vienna: IAEA, 2010.
13. Ekidin A.A., Zhukovskiy M.V., Vasyanovich M.E. Identifikaciya osnovnyh dozoobrazuyuschih radionuklidov v vybrosah AES // Atomnaya energiya. 2016. T.120, № 2. S. 106-108.
14. Oficial'nyy sayt bazy dannyh Evropeyskoy Komissii o vybrosah i sbrosah radioaktivnyh veschestv. URL: http://europa.eu/radd/index.dox (Data obrascheniya: 01.10.17).
15. Oficial'nyy sayt Mezhdunarodnogo Agentstva po Atomnoy Energii. URL: https://www.iaea.org/PRIS (Data obrascheniya: 01.10.2017).
16. Kryshev A.I., Kryshev I.I., Vasyanovich M.E. i dr. Ocenka dozy oblucheniya naseleniya ot vybrosa 14S AES s RBMK-1000 i EGP-6 // Atomnaya energiya. 2020. T. 128, № 1. S. 48-52.
17. SanPiN 2.6.1.2523-09 «Normy radiacionnoy bezopasnosti (NRB-99/2009)».
18. Rasporyazhenie Pravitel'stva RF ot 08.07.2015 № 1316-r «Ob utverzhdenii perechnya zagryaznyayuschih veschestv, v otnoshenii kotoryh primenyayutsya mery gosudarstvennogo regulirovaniya v oblasti ohrany okruzhayuschey sredy».
19. Ekidin A.A., Vasil'ev A.V., Vasyanovich M.E. Sovremennye tehnologii upravleniya vozdeystviem na okruzhayuschuyu sredu kak instrument soblyudeniya principa ALARA // Biosfernaya sovmestimost': chelovek, region, tehnologii. 2017. № 2. S. 67-74.
20. Occupational Intakes of Radionuclides: Part 2. ICRP. Publication 134 // Ann. ICRP. 2016. V.45, No. 3/4. P. 1-352.
21. Limits on Intakes of Radionuclides for Workers: Part 3. ICRP Publication 30 // Ann. ICRP. 1981. V.6, No.2/3.
22. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. New York: United Nations, 2000. V.1: Sources. ISBN 92-1-142238-8.
23. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 1993 Report to the General Assembly, with Scientific Annexes. United Nations Sales Publication E.94.IX.2. New York: United Nations, 1993.
24. ICRP, 1975. Report of the Task Group on Reference Man. ICRP Publication 23. Pergamon Press, Oxford. Russkiy perevod: Chelovek. Mediko-biologicheskie dannye: doklad rabochey gruppy Komiteta II MKRZ po uslovnomu cheloveku. Predisl. Moiseeva A. A. Per. s angl. Parfenova Yu. D. Mezhdunarodnaya komissiya po radiologicheskoy zaschite. Publikaciya № 23. M.: Medicina. 1977. 496 s.
25. MT 1.2.1.15.1176-2016. Razrabotka i ustanovlenie normativov predel'no dopustimyh vybrosov radioaktivnyh veschestv atomnyh stanciy v atmosfernyy vozduh. Metodika. M.: Koncern Rosenergoatom. 2016. 69 s.
26. Kul'kova M.A. Radiouglerod (14S) v okruzhayuschey srede i metod radiouglerodnogo datirovaniya. Uchebno-metodicheskoe posobie. SPb.: Izd-vo RGPU, 2011. 40 s.
27. Brayceva O.A., Sulerzhickiy L.D. Radiouglerodnaya laboratoriya instituta vulkanologii DVNC AN SSSR // Radiouglerod v arheologicheskih i paleoekologicheskih issledovaniyah / Pod red. Zaycevoy G.I., Kul'kovoy M.A. SPb.: IIMK RAN, 2007. C. 89-94.
28. Mendonça Maria Lúcia T.G., Godoy José M., da Cruz Rosana P., Perez Rhoneds A.R. Radiocarbon Dating of Archaeological Samples (Sambaqui) Using CO2 Absorption and Liquid Scintillation Spectrometry of Low Background Radiation // Journal of Environmental Radioactivity. 2006. V.88, No. 3. P. 205-214.
29. Woo, H.J. Optimization of Liquid Scintillation Counting Techniques for the Determination of Carbon-14 in Environmental Samples / Ed. Woo H. J., Chun S. K., Cho S. Y., Kim Y. S., Kang D. W., Kim E. H. // Journal of Radioanalytical and Nuclear Chemistry. 1999. V.239, № 3. P. 649-655.
30. Optimizing the Counting Conditions for Carbon-14 for the Sample Oxidizer-Liquid Scintillation Counter Method. Vesa-Pekka Vartti. STUK- Radiation and Nuclear Safety Authority, Laippatie, 2014. https://www.researchgate.net/publication/260341203
31. Rukovodstvo pol'zovaniya priborom Pyrolyser-6 Trio.
32. Sidorov L.N. Mass-spektrometriya i opredeleniya massy bol'shih molekul // Sorosovkiy obrazovatel'nyy zhurnal. 2000. T.6, № 11. S. 41-45.