Financial University under the Government of the Russian Federation
Moskva, Moscow, Russian Federation
A weighty argument in favor of including the new educational area «Big Data» in the practice of professional training of the future economist is the competence in the field of building adequate predictive models, which is in demand in the modern labor market. Indeed, any leader is interested in improving the quality of the decisions made. This interest increases in conditions of sanctions pressure and post-pandemic restrictions, in difficult socio-economic conditions, when most of the resources are limited, the previously identified cause-and-effect relationships lose their relevance and the responsibility for decisions is significantly increased. Features of the implementation of the technological approach to disclosing the content of the new educational area «Big Data» in the system of professional training of the future economist is presented in this article as follows: firstly, in the form of a system of micro-goals at the basic level, and secondly, in the form of a system of micro-goals at an advanced level. Thus, within the framework of the technological goal-setting of the content of the new educational field, the principle of variability of the professional training of the future economist is implemented. Substantively presented in the article micro-goals cover various issues of using quantitative methods, mathematical and computational modeling. In addition, the formulations of micro-goals include requirements for the development of new tools that support big data analysis. Note that the implementation of technological goal-setting is necessary to strengthen the applied orientation of the training of a future economist, allows us to make a methodological emphasis on applied problems of socio-economic topics, the methods of solving which are in demand in future professional activities. The material of the article can be useful to teachers of the higher school of economics, as well as to anyone interested in modern methodological approaches to structuring educational content and achievements in the field of big data.
technological approach, goal setting, applied focus, educational area, big data, bachelor of economics, data analysis
1. Bodryakov V. Yu., Bykov A. A. Metodicheskie podhody k obucheniyu studentov napravleniya "Prikladnaya matematika i informatika" osnovam intellektual'noy obrabotki bol'shih dannyh // Pedagogicheskoe obrazovanie v Rossii. - 2016. - № 7. - S. 145-152. DOI: https://doi.org/10.26170/po16-07-21; EDN: https://elibrary.ru/WKYFFD
2. Brovka N. V. Integraciya teorii i praktiki obucheniya matematike kak sredstvo povysheniya kachestva podgotovki studentov - Minsk: BGU, 2009. - 243 s. EDN: https://elibrary.ru/VMAKVY
3. Brovka N. V. Ob informatizacii matematicheskoy podgotovki studentov na osnove integracii teorii i praktiki // Matematicheskie metody v tehnike i tehnologiyah - MMTT. 2017. - T. 11. - S. 64-70. EDN: https://elibrary.ru/YMYNYB
4. Bryzgalov A. A., Yaroshenko E. V. Primenenie metodov Data Mining pri proektirovanii i sozdanii novoy produkcii i uslug // Otkrytoe obrazovanie. - 2020. T. 24. № 6. - S. 14-21. DOI: https://doi.org/10.21686/1818-4243-2020-6-14-21; EDN: https://elibrary.ru/QMUFXM
5. Vlasov D. A. Osobennosti celepolaganiya pri proektirovanii sistemy obucheniya prikladnoy matematike // Filosofiya obrazovaniya. - 2008. - № 4 (25). - S. 278-283. EDN: https://elibrary.ru/KTXGOR
6. Vlasov D. A., Sinchukov A. V. Novoe soderzhanie prikladnoy matematicheskoy podgotovki bakalavra // Prepodavatel' XXI vek. - 2013. № 1-1. - S. 71-79. EDN: https://elibrary.ru/QALUOD
7. Glavackiy S. T., Burykin I. G. O cikle kursov «Analitika bol'shih dannyh dlya matematikov» // Sovremennye informacionnye tehnologii i IT-obrazovanie. - 2016. - T. 12. № 3-2. - S. 17-22. EDN: https://elibrary.ru/XIHNIP
8. Denezhkina I. E., Zadadaev S. A. Proverka statisticheskih gipotez s ispol'zovaniem sredstv vizualizacii v srede Rstudio / V sbornike: Sistemnyy analiz v ekonomike - 2018. Sbornik trudov V Mezhdunarodnoy nauchno-prakticheskoy konferencii-biennale. Pod obschey redakciey G. B. Kleynera, S. E. Schepetovoy. - 2018. - S. 181-184. DOI: https://doi.org/10.33278/SAE-2018.rus.181-184; EDN: https://elibrary.ru/YTDIDR
9. Zadadaev S. A. Cifrovoe rasshirenie prepodavaniya bazovoy matematiki // Sovremennaya matematika i koncepcii innovacionnogo matematicheskogo obrazovaniya - 2018. - T. 5. - № 1. - S. 308-314. EDN: https://elibrary.ru/XTXVVB
10. Karasev P. A., Chaykovskaya L. A. Sovershenstvovanie programm vysshego obrazovaniya v kontekste sovremennyh trebovaniy rynkov obrazovatel'nyh uslug i professional'nogo soobschestva // Ekonomika i upravlenie: problemy, resheniya. - 2017. - T. 3. - № 2. - S. 3-9. EDN: https://elibrary.ru/YKTVYB
11. Korolev O. L., Apatova N. V., Krulikovskiy A. P. «Bol'shie dannye» kak faktor izmeneniya processov prinyatiya resheniy v ekonomike // Nauchno-tehnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politehnicheskogo universiteta. Ekonomicheskie nauki. - 2017. - T. 10. № 4. - S. 31-38. DOI: https://doi.org/10.18721/JE.10403; EDN: https://elibrary.ru/ZGIWRB
12. Korytnikova N. V. Online Big Data kak istochnik analiticheskoy informacii v online-issledovaniyah // Sociologicheskie issledovaniya. - 2015. - № 8 (376). - S. 14-24. EDN: https://elibrary.ru/UFZIPB
13. Melehina T. L., Pozdeeva S. N. Priemy vovlechennosti v obuchenie studentov razlichnyh urovney podgotovki pri izuchenii matematicheskih disciplin / V sbornike: Novye tehnologii vysshey shkoly. Nauka, tehnika, pedagogika. Materialy Vserossiyskoy nauchno-prakticheskoy konferencii. - 2020. - S. 333-336. EDN: https://elibrary.ru/MESUJH
14. Mel'nikova V. A., Medvedev D. A Analiz bol'shih dannyh s ispol'zovaniem Python / Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Estestvennye i inzhenernye nauki. - 2019. - T. 1. - S. 46-49.
15. Monahov V. M. Vvedenie v teoriyu pedagogicheskih tehnologiy / V. M. Monahov. - Volgograd, Peremena, 2006. - 365 s. EDN: https://elibrary.ru/QVDHOD
16. Monahov V. M. Pedagogicheskoe proektirovanie - sovremennyy instrumentariy didakticheskih issledovaniy // Shkol'nye tehnologii. - 2001. - № 5. - S. 75.
17. Napedenina E. Yu., Nikitina N. I. Nekotorye aspekty formirovaniya professional'no-prikladnoy matematicheskoy podgotovlennosti buduschih ekonomistov v vuze // Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki. - 2008. - № 1 (57). - S. 261-265. EDN: https://elibrary.ru/IIVZEN
18. Osmolovskaya I. M. I. Ya. Lerner o processe obucheniya: sovremennoe prochtenie // Otechestvennaya i zarubezhnaya pedagogika. - 2017. - T. 1. - № 3 (39). - S. 31-41. EDN: https://elibrary.ru/YTFCEP
19. Polkovnikova N. A. Osobennosti podgotovki specialistov po analizu bol'shih dannyh / V sbornike: Prepodavanie informacionnyh tehnologiy v Rossiyskoy Federacii. Materialy Pyatnadcatoy otkrytoy vserossiyskoy konferencii. - 2017. - S. 73-76. EDN: https://elibrary.ru/PUYGHC
20. Smirnov E. I. Tehnologiya naglyadno-model'nogo obucheniya matematike - Yaroslavl', Yaroslavskiy gosudarstvennyy pedagogicheskiy universitet im. K. D. Ushinskogo, 1998. - 335 s EDN: https://elibrary.ru/SJOOPT
21. Smirnov E. I. Fundirovanie opyta v professional'noy podgotovke i innovacionnoy deyatel'nosti pedagoga. - Yaroslavl', Izdatel'stvo «Kancler», 2012. - 655 c. EDN: https://elibrary.ru/SGDQBZ
22. Smirnov E. I., Trofimec E. N. Proektirovanie informacionno-analiticheskih tehnologiy obucheniya studentov-ekonomistov // Yaroslavskiy pedagogicheskiy vestnik. - 2010. - T. 2. - № 2. - S. 137. EDN: https://elibrary.ru/OFVDSX
23. Sorokin L. V. Preodolenie psihologo-poznavatel'nyh bar'erov, svyazannyh s analizom i vizualizaciey bol'shih dannyh / Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. - 2017. - № 1-3 (55). - S. 59-62. DOI: https://doi.org/10.23670/IRJ.2017.55.026; EDN: https://elibrary.ru/XRHGBF
24. Testov V. A. Osnovnye zadachi razvitiya matematicheskogo obrazovaniya // Obrazovanie i nauka. - 2014. - № 4 (113). - S. 3-17. EDN: https://elibrary.ru/SDUVJN
25. Feklin V. G. Ispol'zovanie LMS Moodle dlya sozdaniya elektronnogo matematicheskogo kursa // Sovremennaya matematika i koncepcii innovacionnogo matematicheskogo obrazovaniya. - 2014. - T. 1. - № 1. - S. 233-240. EDN: https://elibrary.ru/TWKWQZ
26. Tihomirov N. P., Tihomirova T. M. Teoriya riska: uchebnik dlya studentov vuzov, obuchayuschihsya po ekonomicheskim special'nostyam. M.: YuNITI-DANA, 2020. - 308 s.
27. Sukhorukova I. V., Fomin G. P. Hybrid Method for Multi-Criteria Risk Minimization. // Espacios. - 2019. - Vol. 40. - pp. 14 -22 EDN: https://elibrary.ru/VINJGI
28. Sukhorukova I. V., Maksimov D. A., Fomin G. P. Methods of risk minimization in investment and construction projects V sbornike: IOP Conference Series: Materials Science and Engineering. Buldintech bit. 2020. Innovations and technologies in construction. - 2020. - S. 012013. DOI: https://doi.org/10.1088/1757-899X/945/1/012013; EDN: https://elibrary.ru/WVUUKZ
29. Baig, M. I., Shuib, L. & Yadegaridehkordi, E. Big data in education: a state of the art, limitations, and future research directions. Int J Educ Technol High Educ 17, 44 (2020). https://doi.org/10.1186/s41239-020-00223-0
30. Camargo Fiorini, P., Seles, B. M. R. P., Jabbour, C. J. C., Mariano, E. B., & Sousa Jabbour, A. B. L. (2018). Management theory and big data literature: From a review to a research agenda. International Journal of Information Management, 43, 112 -129. https://doi.org/10.1016/j.ijinfomgt.2018.07.005.
31. Coccoli, M., Maresca, P., & Stanganelli, L. (2017). The role of big data and cognitive computing in the learning process. Journal of Visual Languages & Computing, 38, 97-103. https://doi.org/10.1016/j.jvlc.2016.03.002.
32. Gupta, D., & Rani, R. (2018). A study of big data evolution and research challenges. Journal of Information Science., 45(3), 322-340. https://doi.org/10.1177/0165551518789880.
33. Logica, B., & Magdalena, R. (2015). Using big data in the academic environment. Procedia Economics and Finance, 33(2), 277-286. https://doi.org/10.1016/s2212-5671(15)01712-8.