Russian Federation
Rostov-na-Donu, Rostov-on-Don, Russian Federation
In the article, the resolving equations are obtained for the calculation taking into account the physical nonlinearity and creep of centrally compressed concrete filled steel tubular columns of annular cross-section. The examples of the calculation of the bearing capacity with a short-term load are given. The solution was carried out numerically in the Matlab environment using the finite difference method. The deformation theory of plasticity by G.A. Geniev was used.
pipe concrete, annular section, bearing capacity, deformation theory of plasticity, finite difference method, physical nonlinearity
1. Krishan A. L., Rimshin V. I., Troshkina E. A. Strength of short concrete filled steel tube columns of annular cross section // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. No. 2. Article 022062.
2. Krishan A. L., Troshkina E. A., Chernyshova E. P. Strength of Short Centrally Loaded Concrete-Filled Steel Tubular Columns //IFAC-PapersOnLine. 2018. Vol. 51. No. 30. Pp. 150-154.
3. Krishan A. L., Chernyshova E. P., Sabirov R. R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section //Procedia Engineering. 2016. Vol. 150. Pp. 1878-1884.
4. Wong Y. L. i dr. Behavior of FRP-confined concrete in annular section columns //Composites Part B: Engineering. 2008. Vol. 39. No. 3. Pp. 451-466.
5. Wan C. Y., Zha X. X. Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading //Steel and Composite Structures. 2016. Vol. 20. No. 3. Pp. 571-597.
6. Mailyan L.R., Chepurnenko A.S., Ivanov A. Calculation of prestressed concrete cylinder considering creep of concrete // Procedia Engineering. 2016. Vol.165. Pp. 1853-1857.
7. Chepurnenko A.S., Andreev V.I., Yazyev B.M. Postroyeniye modeli ravnonapryazhennogo tsilindra na osnove teorii prochnosti Mora [Construction of a model of an equally stressed cylinder based on Mohr's theory of strength] // Vestnik MGSU. 2013. No. 5. Pp. 56-61.
8. Dudnik A.E., Chepurnenko A.S., Nikora N.I. Ploskaya osesimmetrichnaya zadacha termovyazkouprugosti dlya polimernogo tsilindra [Plane axisymmetric problem of thermoviscoelasticity for a polymer cylinder] // Inzhenernyy vestnik Dona. 2015. No. 1-2. URL: http://ivdon.ru/ru/magazine/archive/n1p2y2015/2816
9. Dudnik A.E., Chepurnenko A.S., Litvinov S. V., Denego A.S. Ploskoye deformirovannoye sostoyaniye polimernogo tsilindra v usloviyakh termovyazkouprugosti [Plane deformed state of a polymer cylinder under thermoviscoelastic conditions] // Inzhenernyy vestnik Dona. 2015. No. 2. URL: http://ivdon.ru/ru/magazine/archive/n2p2y2015/3063
10. Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [The theory of plasticity of concrete and reinforced concrete]. Moscow: Stroyizdat, 1974. 316 p.