Review of statistical methods for assessing the probability of detecting defects in non-destructive testing
Abstract and keywords
Abstract (English):
The probability of detection (POD) depends on defects size and is an integral part of calculating the resource during non-destructive testing of parts. This article provides an overview of well-established statistical methods for estimating PODs, with a little historical insight into their emergence. An overview of new advances in POD calculation in recent years is given: three- and four-parameter models; nonparametric models; planning the experiment and sampling of defects; applying defect modeling to reduce the number of samples; the application of the Box-Cox transformation; the influence of the variability of the initial data on the result; application of Bayesian statistics. An overview of the tasks that POD specialists still have to solve in the future: nonlinear models, modeling in conjunction with Bayesian statistics, etc

Keywords:
probability of detection, POD, nondestructive testing
References

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravleniy razvitiya materialov i tehnologiy ih pererabotki na period do 2030 goda». - Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3-33.

2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologiy ih pererabotki na period do 2030 goda. - Aviacionnye materialy i tehnologii. 2012. №1. S. 7-17.

3. Kablov E.N. Kontrol' kachestva materialov - garantiya bezopasnosti ekspluatacii aviacionnoy tehniki. - Aviacionnye materialy i tehnologii. 2001. №1. S. 3-8.

4. Kablov E.N. Sovremennye materialy - osnova innovacionnoy modernizacii Rossii. - Metally Evrazii. 2012. №3. S. 10-15.

5. Kablov E.N. Materialy novogo pokoleniya - osnova innovaciy, tehnologicheskogo liderstva i nacional'noy bezopasnosti Rossii. - Intellekt i tehnologii. 2016. №2 (14). S. 16-21.

6. Berens, A.P., Hovey P.W. The Sample Size and Flaw Size Effects in NDI Reliability Experiments. - Review of Progress in Quantitative Nondestructive Evaluation, 1985. V. 4. P. 1327-1334.

7. MIL-HDBK-1823A. Department of Defense Handbook: Nondestructive Evaluation System Reliability Assessment. 2009. 171 p.

8. Boychuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Veroyatnostnaya ocenka dostovernosti rezul'tatov ul'trazvukovogo nerazrushayuschego kontrolya konstrukciy iz PKM, primenyaemyh v aviacionnoy promyshlennosti. - Remont. Vosstanovlenie. Modernizaciya. 2013. №9. S. 36-39.

9. Kobzar' A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnyh sotrudnikov. - M.: Fizmatlit, 2006. - 816 s.

10. Mohamed Subair Syed Akbar Ali, Prabhu Rajagopal. Probability of Detection (PoD) Curves Based on Weibull Statistics. - Journal of nondestructive evaluation, 2018. 37, 20.

11. Chertischev V.Yu. Ocenka veroyatnosti obnaruzheniya defektov akusticheskimi metodami v zavisimosti ot ih razmera v konstrukciyah iz PKM dlya vyhodnyh dannyh kontrolya v vide binarnyh velichin. - Aviacionnye materialy i tehnologii. №3. 2018. S. 65-79.

12. Osnovy matematicheskoy statistiki / pod red. V.S. Ivanova. - M.: Fizkul'tura i sport, 1990. - 165 s.

13. FAA DOT/FAA/AR-05/16 “Contaminated Billet Study” (U.S. Department of Transportation Federal Aviation Administration).

14. Charles Annis, John C. Aldrin, Harold A. Sabbagh. What is missing in nondestructive testing capability evaluation? - Material Evaluation. 2015. V. 73. No. 1. P. 44-54.

15. Charles Annis, Luca Gandossi, Oliver Martin. Optimal Sample Size for Probability of Detection Curves. - Nuclear Engineering and Design. 2013. V. 262. P. 98-105.

16. Charles Annis, John C. Aldrin, Harold A. Sabbagh. Profile Likelihood: What To Do When Maximum Probability of Detection Never Gets To One. - Material Evaluation. 2015. V. 73. No. 1. P. 96-99.

17. Jeremy S. Knopp, Frank Ciarallo, RamanaV. Grandhi. Developments in Probability of Detection Modeling and Simulation Studies - Material Evaluation. 2015. V. 73. No. 1. P. 55-61.

18. Sakia, R.M. The Box-Cox Transformation Technique: A Review - The Statistician. 1992. V. 41, P. 169-178.

19. Mohamed Subair Syed Akbar Ali, Prabhu Rajagopal. Probability of Detection (PoD) Curves Based on Weibull Statistics. - Journal of Nondestructive Evaluation. 2018. V. 37(2). Art. numb. 20.

20. Li M., F.W. Spencer, W.Q. Meeker. Quantile Probability of Detection: Distinguishing between Uncertainty Variability in Nondestructive Testing. - Material Evaluation. 2015. V. 73. No. 1. P. 89-95.

21. Spencer Floyd W. Nonparametric Pod Estimation for Hit/miss Data: A Goodness of Fit Comparison for Parametric Models - Review of Progress in Quantitative Nondestructive Evaluation, 2011. V. 30. P. 1557-1564.

22. Koh Y.M., W.Q. Meeker. Bayesian Planning of Hit-Miss Inspection Tests - Review of Progress in Quantitative Nondestructive Evaluation. 2014. V. 33. P. 2047-2054.

23. Knopp J.S., L. Zeng. Statistical Analysis of Hit/miss Data - Materials Evaluation. 2013. V. 71. No. 3. P. 323-329.

24. Knopp J.S. Modern Statistical Methods and Uncertainty Quantification for Evaluating Reliability of Nondestructive Evaluation Systems. - Ph.D., Engineering Ph.D. program. Wright State University. 2014. p. 166.

25. FAA DOT/FAA/AR-07/63 “Update of Default Probability of Detection Curves for the Ultrasonic Detection of Hard Alpha Inclusions in Titanium Alloy Billets” (U.S. Department of Transportation Federal Aviation Administration).

Login or Create
* Forgot password?