Russian Federation
Russian Federation
Purpose: To adapt traditional method of soft beta emitters’ dose calculation to the individual biological cells, to estimate the value of absorbed dose-rate factors for different tritium compounds on a cellular level. Material and methods: Approximation for point-source function obtained by L.V. Timofeev, G.B. Radzievsky et al. was used to adapt macroscopic beta-particle dosimetry methods to the area of subcellular structures. Results: Using the introduced concept of irradiated cell model base states the analytical expressions for absorbed dose in subcellular structures were suggested for non-uniform activity distributions of soft beta emitters in human tissue. The values of absorbed dose-rate factors for the case of organically bounded tritium confined to the nucleus (1.8 mGy/decay for 3H-thymidine) and for the case of tritiated water uniformly distributed throughout tissue (3.510-3 mGy/decay) were obtained. Conclusion: It can be assumed that traditional method of soft beta emitters’ dose calculation is adapted to the individual biological cells. The proposed methodology is supposed to be used in the future when constructing, based on experimental data, a biokinetic model of the intake of tritium organic compounds in the human body.
microdosimetry, dosimetry of internal irradiation, soft beta emitters, tritium, point-source function, absorbed-dose distribution, biological cell, cell nucleus
1. Osanov DP, Lihtarev IA. Dozimetriya izlucheniy inkorporirovannyh radioaktivnyh veschestv. M.: Atomizdat. 1977. 199 c. [Osanov DP, Likhtarev IA. Radiation Dosimetry of Incorporated Radioactive Substances. Moscow: Atomizdat; 1977. 199 p. (In Russ.)].
2. Publikaciya 103 Mezhdunarodnoy komissii po radiacionnoy zaschite (MKRZ). Per. s angl. pod red. M.F. Kiseleva i N.K. Shandaly. 2009. M.: OOO PKF «Alana». 2009. 344 s. [ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Moscow: Alana; 2009. 344 p. (In Russ.)].
3. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108(3):362-9. DOI:https://doi.org/10.1016/j.radonc.2013.06.013.
4. Streffer C, van Beuningen D, Elias S. Comparative Effects of Tritiated Water and Thymidine on the Preimplanted Mouse Embryo in Vitro. Curr Top Radiat Res Q. 1978;12(1-4):182-93. PMID: 639546.
5. Müller WU. Comment on the invited editorial 'Effectiveness of tritium beta particles'. J Radiol Prot. 2008;28(2):249-52. DOI:https://doi.org/10.1088/0952-4746/28/2/L01.
6. UNSCEAR 2016. Report to the General Assembly, with Scientific Annexes. Annex C. Biological effects of selected internal emitters - Tritium. United Nations. New York, 2017. 360 p.
7. Rossi HH. Specification of radiation quality. Radiation Res. 1959;10(5):522-31. DOI:https://doi.org/10.2307/3570787.
8. Rossi H. Mikroskopicheskoe raspredelenie energii izlucheniya. V sb.: «Mikrodozimetriya. Trudy simpoziuma». Per. s angl. pod. red. A.N. Krongauza. M.: Atomizdat. 1971. S. 21-29. [Rossi H. Microscopic Distribution of Radiation Energy. In: Proc Symp Microdosimetry; 1967 Nov 13-15; Ispra, Italy. Moscow: Atomizdat; 1971. P.21-29. (In Russ.)].
9. Timofeev LV. Dozimetricheskie issledovaniya istochnikov beta-izlucheniya medicinskogo primeneniya. M.: Avtoref. diss. kand. tehn. nauk. 1974.[Timofeev LV. Dosimetric Studies of Beta Radiation Sources For Medical Use. Author’s abstract. diss. PhD Tech. Moscow, 1974. (In Russ.)].
10. Radzievskiy GB. Primenenie tritievyh misheney dlya beta-oblucheniya v eksperimental'nyh celyah. Pribory i tehnika eksperimenta. 1970;1:70. [Radzievsky GB. The Use of Tritium Targets for Beta Irradiation for Experimental Purposes. Instruments and Experimental Techniques. 1970;1:70. (In Russ.)].
11. Balonov MI. Dozimetriya i normirovanie tritiya. M.: Energoatomizdat. 1983. 152 s. [Balonov MI. Dosimetry and Standartization of Tritium. Moscow: Energoatomizdat; 1983. 152 p. (In Russ.)].
12. Loevinger R, Japha EM, Brownell GL. Discrete radioisotope sources. In: Radiation Dosimetry. Eds.: Hine GJ, Brownell GL. New York: Academic Press; 1956. P.693-799. DOI:https://doi.org/10.1016/B978-1-4832-3257-7.50024-X.
13. Loevinger R. The Dosimetry of Beta Sources in Tissue. The Point-Source Function. Radiology. 1956;66(1):55-62. DOI:https://doi.org/10.1148/66.1.55.
14. Timofeev LV, Radzievskiy GB, Bochkarev VV, Dem'yanov NA. O rezul'tatah izucheniya doznoy funkcii tochechnogo istochnika beta-izlucheniya. V sb.: «Materialy 9-go Vsesoyuznogo s'ezda rentgenologov i radiologov». M.: Izd-vo MZ SSSR. 1970. C. 432. [Timofeev LV, Radzievsky GB, Bochkarev VV, Demianov NA. Concerning the Results of Studying the Beta-Particle Point-Source Function. In: Proc 9th All-Union Congress of Radiologists; 1970 Oct 20-23; Tbilisi, USSR. Moscow: USSR Ministry of Public Health; 1974. P.432. (In Russ.)].
15. Leichner PK, Hawkins WG, Yang NC. A Generalized, Empirical Point-Source Function for Beta-Particle Dosimetry. Antibody Imunnoconj Radiophar. 1989; 2(3):125-44.
16. Bochkarev VV, Radzievsky GB, Timofeev LV, Demianov NA. Distribution of adsorbed energy from a point beta-source in a tissue-equivalent medium. Int J Appl Rad Isotopes. 1972;23:493-504. DOI:https://doi.org/10.1016/0020-708x(72)90131-7.
17. Berger MJ. Distribution of adsorbed dose around point sources of electrons and beta particles in water and other media. J Nucl Med. 1971;12(5):5-23. PMID: 5551700.
18. Stepanenko VF, Nirec TA, Obaturov GM. O radiobiologicheskoy znachimosti neravnomernosti raspredeleniya pogloschennoy energii pri vnutrennem obluchenii elektronami malyh energiy. V sb. tezisov Vs. konf «Otdalennye posledstviya i ocenka riska vozdeystviya radiacii» IBF MZ SSSR. M.: 1978. S. 115-7. [Stepanenko VF, Nirets TA, Obaturov GM. Concerning the Radiobiological Significance of the Non-uniform Distribution of Absorbed Energy After Internal Exposure with Low-Energy Electrons. In: Proceedings of the All-Union Conference “Individual Effects and Risk Assessment of Radiation Exposure”; 1978 Oct 3-5; Moscow, 1978. P.115-7. (In Russ.)].
19. Stepanenko VF, Beluha IG, Dubov DV, Yas'kova EK, Cyb AF. Nanodozimetricheskoe obosnovanie izbiratel'nogo radiacionnogo vozdeystviya na hromosomy kaskadnymi izluchatelyami elektronov maloy energii. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2012;57(6):5-8. [Stepanenko VF, Belukha IG, Dubov DV, Yaskova EK, Tsyb AF. Nanodosymetric Basing of Selective Irradiation to Chromosomes with Cascade Irradiators of Low-Energy Electrons. Medical Radiology and Radiation Safety. 2012;57(6):5 8. (In Russ.)].
20. Stepanenko VF, Yas'kova EK, Beluha IG, Petriev VM, Skvorcov VG, Kolyzhenkov TV i dr. Raschety doz vnutrennego oblucheniya nano-, mikro- i makro-biostruktur elektronami, beta-chasticami i kvantovym izlucheniem razlichnoy energii pri razrabotkah i issledovaniyah novyh RFP v yadernoy medicine. Radiaciya i risk. 2015;24(1):35-60. [Stepanenko VF, Yaskova EK, Belukha IG, Petriev VM, Skvortsov VG, Kolyzhenkov TV, et al. The calculation of Internal Irradiation of Nano-, Micro- and Macro-biostructures by Electrons, Beta Particles and Quantum Radiation of Different Energy for the Development and Research of New Radiopharmaceuticals in Nuclear Medicine. Radiation and Risk. 2015;24(1):35-60. (In Russ.)].
21. Yanke E, Emde F, Lesh F. Special'nye funkcii: Formuly, grafiki, tablicy. Per. s nem. pod red. L.I. Sedova. M.: Nauka. 1964. 344 c. [Janke E, Emde F, Losch F. Tables of higher functions. Moscow: Nauka; 1964. 344 p. (In Russ.)].
22. Gorshkov VE. Approksimacionnoe sootnoshenie dlya rascheta moschnosti dozy radioaktivnyh vypadeniy. Atomnaya energiya. 1993;74(1):47-53. [Gorshkov VE. Approximation for calculating the dose rate of radioactive fallout. Atomic Energy. 1993;74(1):47-53. (In Russ.)].
23. Duque A, Rakic P. Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci. 2011;31(42):15205-17. DOI:https://doi.org/10.1523/JNEUROSCI.3092-11.2011.
24. Vorob'eva NYu, Kochetkov OA, Pustovalova MV, Grehova AK, Blohina TM, Yashkina EI i dr. Sravnitel'nye issledovaniya obrazovaniya fokusov gH2AX v mezenhimal'nyh stvolovyh kletkah cheloveka pri vozdeystvii 3H-timidina, oksida tritiya i rentgenovskogo izlucheniya. Kletochnye tehnologii v biologii i medicine. 2018;(3):205-8. [Vorob’eva NYu, Kochetkov OA, Pustovalova MV, Grekhova AK, Blokhina TM, Yashkina EI, et al. Comparative Analysis of the Formation of gH2AX Foci in Human Mesenchymal Stem Cells Exposed to 3H-Thymidine, Tritium Oxide, and X-Rays Irradiation. Cell Technologies in Biology and Medicine. 2018;(3):205-8. (In Russ.)]. DOI:https://doi.org/10.1007/s10517-018-4309-1.
25. Vorob'eva NYu., Uyba VV., Kochetkov OA, i dr. Vliyanie 3H-timidina na indukciyu dvunitevyh razryvov DNK v mezenhimal'nyh stvolovyh kletkah cheloveka. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2018;63(1):28-34. [Vorobyeva NYu, Uyba VV, Kochetkov OA, Astrelina TA, Pustovalova MV, Grekhova AK, et al. 3H-Thymidine Influence on DNA Double Strand Breaks Induction in Cultured Human Mesenchymal Stem Cells. Medical Radiology and Radiation Safety. 2018;63(1):28-34. (In Russ.)]. DOI:https://doi.org/10.12737/article_5a855c9d5b1211.49546901.
26. Zheng YH, Xiong W, Su K, Kuang ShJ, Zhang ZhG. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Exp Ther Med. 2013;5(6):1576-80. DOI:https://doi.org/10.3892/etm.2013.1042.
27. Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material: NCRP Report no. 63. National Council on Radiation Protection and Measurements: Washington, DC. 1979. 116 p.