BASIC PROVISIONS IN MODEL DEVELOPMENT IN THE CURRENT OF OPEN WATER STREAMS
Abstract and keywords
Abstract (English):
For the design of hydraulic structures, it is necessary to use special methods for calculating the water flow to determine the kinetic energy acting on the structures. A mathematical model of a two-dimensional in terms of stationary open water flow and boundary conditions in the problem of free spreading are formulated. The main solved and to be solved problems of determining the flow parameters are determined, its reduction to a dimensionless form by various transformations of coordinates and flow parameters. The method proposed by I.A. Sherenkov. The solution of the problem is described, which depends on the dimensionless parameter - the Froude criterion at the outlet of the flow from the pipe. With Froude numbers exceeding one or close to it, it is required to build a series of graphs or develop a unified theory, an algorithm for solving the problem. The general conclusions on the work are as follows: - the need for further research has been proven theoretically and experimentally. - tasks are formulated that must be performed, solved in order to obtain a result adequate to the real process of solving the problem of free spreading of a turbulent flow to the entire spectrum of parameters. - substantiated the need to continue research to determine the entire spectrum of parameters of a stationary open two-dimensional potential flow in terms of its outflow from a free-flow pipe into a wide horizontal smooth channel. - the requirements for the model taking into account the conjugation of a uniform flow with a radial flow in the form of a simple wave are determined The work was written with a critical assessment of existing methods for solving the problem and to substantiate the relevance of further scientific research.

Keywords:
boundary value problem, free spreading, hydraulic structures, water flow, mathematical model, plane of velocity hodograph
Text
Text (PDF): Read Download
References

1. Spravochnik po gidravlike [Tekst] / Pod red. V.A. Bol'shakova. - 2-e izd., pererab. i dop. - Kiev: Vyscha shkola, 1984. - 343 s.

2. Emcev B.T. Dvuhmernye burnye potoki [Tekst] / B.T. Emcev. - M.: Energoizdat, 1967. - 212 s.

3. Vysockiy L.I. Gidravlicheskiy raschet rasseivayuschih tramplinov metodom prodol'nyh approksimaciy [Tekst] / L.I. Vysockiy. - MISI im. V.V. Kuybysheva, 1960.

4. Volchenkov G.Ya. Posobie po gidravlicheskim raschetam malyh vodopropusknyh sooruzheniy [Tekst] / G.Ya. Volchenkov.- M.: Transport, 1992.- 408 s.

5. Lavrent'ev M.A. Problemy gidrodinamiki i ih matematicheskie resheniya [Tekst] / M.A. Lavrent'ev, B.V. Shabat.- izd. 2-e.- M.: Nauka, 1977.- 408 s.

6. Sedov L.I. Mehanika sploshnoy sredy [Tekst] / L.I. Sedov.- izd. 5-e., ispr.- M.: Nauka, 1994.- 528 s.

7. Vladimirov V.S. Uravneniya matematicheskoy fiziki [Tekst] / V.S. Vladimirov.- izd. 4-e.- M.: Nauka, 1981.- 512 s.

8. Kurant R. Uravneniya s chastnymi proizvodnymi [Tekst] / R. Kurant.- M.: Mir, 1964.- 830 s.

9. Esin A.I. Zadachi tehnicheskoy mehaniki zhidkosti v estestvennyh koordinatah / FGOU VPO «Saratovskiy GAU». Saratov, 2003. 144 s.

10. Sheterlinht D.V. Gidravlika.- izd. 3-u, pererab.- M.: Kolos, 2005.- 656 s.

11. Loycyanskiy L.G. Mehanika zhidkosti i gaza.- 5-e izd.- M.: Nauka, 1978.- 736 s.

12. Dmitrievskiy V.I. Gidromehanika [Tekst] / D.N. Popov, S.S. Ponayotti, M.V. Ryabinin.- M.: Izd-vo «Morskoy transport», 1962.- 384 s.

13. Popov D.N. Gidromehanika [Tekst] / D.N. Popov, S.S. Ponayotti, M.V. Ryabinin.- M.: Izd-vo MGTU im. N.E. Baumana, 2002.- 384 s.

14. Kohanenko V.N. Modelirovanie odnomernyh i dvuhmernyh otkrytyh vodnyh potokov [Tekst]: monografiya / V.N. Kohanenko, Ya.V. Volosuhin, V.V. Shiryaev, N.V. Kohanenko; pod obschey red. V.N. Kohanenko. - Rostov n/D: Izd-vo YuFU, 2007. - 168 s.

15. Kohanenko V.N. Modelirovanie burnyh dvuhmernyh v plane vodnyh potokov [Tekst]: Monografiya / V.N. Kohanenko, Ya.V. Volosuhin, M.A. Lemeshko, N.G. Papchenko; pod obschey red. V.N. Kohanenko. - Rostov n/D: Izd-vo YuFU, 2013. - 180 s.

16. Kohanenko V.N. Reshenie zadachi svobodnogo rastekaniya potoka za beznapornymi vodopropusknymi otverstiyami / V.N. Kohanenko, A.I. Kondratenko, M.Yu. Kosichenko, V.I. Lidnevskiy i dr. / Izv. vuzov. Sev.-Kavk. Region. Estestvennye nauki. - 2017. - № 2. - S. 15-25

17. Kosichenko N.V. Issledovanie i modelirovanie processa svobodnogo rastekaniya burnogo potoka za vodopropusknymi sooruzheniyami [Tekst]: avtoref. diss. na soisk. uch. stepen. kand. tehn. nauk: 05.23.16: Kosichenko Natal'ya Viktorovna.- M., 2011, 24 s.

18. Aleksandrova M.S. Metod analogiy mezhdu gidravlikoy dvuhmernyh v plane vodnyh potokov i gazovoy dinamikoy // Stroitel'stvo i arhitektura. - 2020. - T. 8, Vyp. 2 (27). - S. 49-52. DOIhttps://doi.org/10.29039/2308-0191-2020-8-2-49-52.

19. Kohanenko V.N., Burceva O.A., Aleksandrova M.S. Dvuhmernyy v plane vihreistochnik // Stroitel'stvo i arhitektura. - 2020. - T. 8, Vyp. 2 (27). - S. 44-48. DOIhttps://doi.org/10.29039/2308-0191-2020-8-2-44-48.

20. Kohanenko V.N., Aleksandrova M.S. Algoritm sopryazheniya dvuhmernyh v plane ravnomernogo i radial'nogo potokov // Izvestiya VUZov Severo-Kavkazskiy region. Tehnicheskie nauki.- 2020. - № 3. - S. 18-21. DOIhttps://doi.org/10.17213/1560-3644-2020-3-18-21.

21. Kohanenko V.N., Aleksandrova M.S. Metod resheniya granichnyh zadach po techeniyu dvuhmernyh v plane potencial'nyh potokov s ispol'zovaniem preobrazovaniya S.A. Chaplygina // Izvestiya Vuzov. Severo-Kavkazskiy region. Tehnicheskie nauki. - 2020. - № 4 (208). - S. 19-22. DOI 10.1017213/1560-3644-2020-4-19-22

22. Aleksandrova M.S. Shema ispol'zovaniya prostyh voln pri svobodnom rastekanii potoka // Studencheskaya nauchnaya vesna - 2020: mater. Regional'noy nauch.-tehn. konf. stud., aspirantov i molodyh uchenyh vuzov Rostovskoy oblasti, g. Novocherkassk, 13-14 maya 2020 g., Yuzh.-Ross. gos. politehn. un-t (NPI) imeni M.I. Platova.- Novocherkassk: YuRGPU (NPI), 2020. - S. 7.

23. Kokhanenko V.N., Burtseva O.A., Aleksandrova M.S. Two-dimensional plan source, vortex and vortex source // (2021) IOP Conf. Series: Materials Science and Engineering 1029 (1) 012023 DOIhttps://doi.org/10.1088/1757-899X/1029/1/012023

24. Kondratenko A.I., Aleksandrova M.S. Estimation of a motion equations system of a potential two-dimensional in a water flow plan to dimensionless form // (2021) IOP Conf. Series: Materials Science and Engineering 1030 (1) 012122. DOIhttps://doi.org/10.1088/1757-899X/1030/1/012122

25. Aleksandrova M.S. Prostye volny v teorii dvuhmernyh v plane vodnyh potokov i shema ih ispol'zovaniya dlya svobodnogo rastekaniya potoka // Stroitel'stvo i arhitektura. 2020. T. 8, № 3 (28). S. 47-50. DOIhttps://doi.org/10.29039/2308-0191-2020-8-3-47-50.

26. Kohanenko V.N., Aleksandrova M.S. Metod resheniya zadachi svobodnogo rastekaniya burnogo potencial'nogo potoka za beznapornoy truboy // Stroitel'stvo i arhitektura. 2020. T. 8, № 3 (28). S. 83-87. DOIhttps://doi.org/10.29039/2308-0191-2020-8-3-83-87.

27. Kohanenko V.N., Aleksandrova M.S. Sopryazhenie dvuh ravnomernyh potokov // Stroitel'stvo i arhitektura. 2020. T. 8, № 4 (29). S. 83-86. DOIhttps://doi.org/10.29039/2308-0191-2020-8-4-83-86.

28. Kohanenko V.N., Aleksandrova M.S., Kondratenko A.I. Model' processa svobodnogo rastekaniya dvuhmernogo v plane vodnogo potoka za beznapornymi otverstiyami // Vestnik MGSU. 2021. T. 16. Vyp. 1. S.. DOI:https://doi.org/10.22227/1997-0935.2020.1.

29. Sherenkov I.A. Raschet rastekayuschegosya burnogo potoka za vyhodnymi ogolovkami vodopropusknyh sooruzheniy [Tekst] / I.A. Sherenkov // Tr. Ob'edinennogo seminara po gidroenergeticheskomu i vodohozyaystvennomu stroitel'stvu. - Vyp. 1. - Har'kov. - 1958.

30. Militeev A.N. Metod rascheta sopryazheniya b'efov v prostranstvennyh usloviyah [Tekst] / A.N. Militeev, N.P. Togunova// Gidravlika sooruzheniy orositel'nyh sistem: tr. NIMI.- Novocherkassk, 1976.- T. 18.- Vyp. 5.- S 180-194.

31. Chaplygin S.A. Mehanika zhidkosti i gaza. Matematika. Obschaya mehanika [Tekst]: Izbrannye trudy / S.A. Chaplygin. - M.: Nauka, 1976. - 496 s.


Login or Create
* Forgot password?