PEDAGOGICAL MODEL OF FORMATION OF ENGINEERING COMPETENCE OF STUDENTS OF BASIC GENERAL EDUCATION
Abstract and keywords
Abstract (English):
The article presents a pedagogical model for the formation of engineering competence of students of basic General education. The developed model includes the goal, tasks, methodological approaches (system, competence-activity, personality-oriented), components, stages, principles (structure, complexity, openness of the system, consciousness and creative activity, professional orientation of training, polysubject interaction, creativity, trust and self-realization, individuality), pedagogical conditions of the organization and the expected result of the process. The work used mainly theoretical research methods, with the selection and analysis of current scientific data on the problem under study, synthesis, generalization of the information obtained and summing up the results of the study. The scientific novelty of the research consists in presenting a model of practice-oriented nature, which can be considered as a tool for achieving a high level of engineering competence of students of basic General education. The model reveals the pedagogical conditions of an effective process, determines the levels of formation of engineering competence of students. The proposed model serves as a theoretical and practical basis for the successful organization of students ' education in the study of engineering, extracurricular engineering activities, and project work in the field of science and technology.

Keywords:
competence, engineering education, engineering competence, General education, competence approach, engineering activity
References

1. Belikov V. A. Filosofiya obrazovaniya lichnosti: deyatel'nostnyy aspekt: monografiya / V. A. Belikov. M.: Vlados, 2004. 357 s.

2. Mihaylova V. E. Razvitie inzhenernoy kompetencii v usloviyah dopolnitel'nogo obrazovaniya detey // Rol' innovaciy v transformacii sovremennoy nauki: tezisy dokladov Mezhdunarodnoy nauchno-prakticheskoy konferencii (Ufa, iyul' 2016 g.). Ufa : NIC Aeterna, 2016. S.264-267.

3. Moramzina L. A., Bezrukova N. P. Formirovanie elementov inzhenernoy kompetencii shkol'nikov v processe realizacii dopolnitel'nyh obrazovatel'nyh programm po inzhenernoy grafike // Razvitie detskogo tehnicheskogo tvorchestva: metodicheskiy sbornik. - Krasnoyarsk: Gorodskoy informacionno - izdatel'skiy centr, 2013. S. 4 - 16.

4. Podvorchan Yu. A. Formirovanie inzhenernyh kompetenciy shkol'nikov na zanyatiyah v komp'yuternom klasse «Graff» / Yu. A. Podvorchan // Resursoeffektivnye sistemy v upravlenii i kontrole: vzglyad v buduschee : sbornik nauchnyh trudov V Mezhdunarodnoy konferencii shkol'nikov, studentov, aspirantov, molodyh uchenyh (Tomsk, 3-8 oktyabrya 2016 g.) Tomsk : Izd-vo TPU, 2016. T. 3. S. 66-68.

5. Sardushkina Yu. A. Vzaimodeystvie shkoly i VUZa kak sredstvo povysheniya rezul'tativnosti proforientacionnoy raboty / Yu. A. Sardushkina // Psihologiya i pedagogika. 2013. № 4. - S. 165 - 173.

6. Spivakova E. A. Sotrudnichestvo shkoly i vuza - put' k povysheniyu kachestva obrazovaniya // Territoriya nauki. 2013. №1. S. 39 - 41.

7. Federal'nyy gosudarstvennyy obrazovatel'nyy standart osnovnogo obschego obrazovaniya (FGOS OOO) URL: https://fgos.ru, svobodnyy. - Zagl. s ekrana (Data obrascheniya: 14.10.2020).

8. Cheremuhin P. S., Shumeyko A. A. Innovacionnaya proektnaya deyatel'nost' uchaschihsya shkoly pri realizacii programm nepreryvnogo inzhenernogo obrazovaniya // Turku: ISSPP. 2017. C. 23 - 25.

9. Shmygova I. S., Chekuleva M. E. Prikladnye zadachi - kak sredstvo formirovaniya inzhenernoy kompetencii shkol'nikov // Nauchnoe soobschestvo studentov XXI stoletiya. Gumanitarnye nauki: tezisy dokladov XLV mezhdunarodnoy nauchno-prakticheskoy konferencii (Novosibirsk, sentyabr' 2016 g.). Novosibirsk, 2016. S. 49-57.

10. Yakovlev, E. V. Pedagogicheskoe issledovanie: soderzhanie i predstavlenie rezul'tatov / E. V. Yakovlev, N. O. Lkovleva. Chelyabinsk: Izd-vo RBIU, 2010. 316 s.

11. Bull G., Chiu J., Berry R., Lipson H. Advancing children’s engineering through desktop manufacturing // Handbook of Research on Educational Communications and Technology. - 2014. -pp. 675-688. DOI: https://dx.doi.org/10.1007/978-1-4614-3185-5_54

12. Castaldi P., Mimmo N., Mimmo N. An Experience of Project Based Learning in Aerospace Engineering // IFAC-PapersOnLine. - 2019. - Vol.52. - no.12. pp.484- 489. DOI: https://doi.org/10.1016/j.ifacol.2019.11.290

13. Chao J., Po H., Chang Y., Yao L. The Study of 3D Printing Project Course for Indigenous Senior High School Students in Taiwan // Proc. IEEE Int. Conf. Adv. Mater. Sci. Eng. (ICAMSE 2016), IEEE, Tainan. - 2016. - pp. 68-70. DOI: https://dx.doi.org/10.1109/ICAMSE.2016.7840234

14. Kostakis V., Niaros V., Giotitsas C. Open source 3D printing as a means of learning // Educational experiment in two high schools in Greece, Telemat. Informatics. - 2015. - Vol.32. - pp. 118-128. DOI: https://doi.org/10.1016/j.tele.2014.05.001

15. Löfgren S., Ilomäki L., Toom A. Employer views on upper-secondary vocational graduate competences // Journal of Vocational Education & Training. - 2019. - pp.1-26. DOI: https://doi.org/10.1080/13636820.2019.1635633

16. Pikkarainen A., Piili H.. Implementing 3D Printing Education Through Technical Pedagogy and Curriculum Development // International Journal of Engineering Pedagogy. - 2020. - Vol.10. - no.6. - pp. 95-119. DOI: https://doi.org/10.3991/ijep.v10i6.14859

Login or Create
* Forgot password?