Federal Educational and MethodologicalAssociation in the System of Higher Education «Technospheric Safety and Environmental Management» (Associate Professor)
Moskva, Moscow, Russian Federation
graduate student
Vortex tubes based on Rank-Hilsch effect are widely used in gas separation technologies, cleaning of harmful gas emissions in the atmosphere protection, capture of oil-associated gas, cooling systems in chemical, petrochemical and other industries. However, up to the present moment in their design the calculation methods produce significant errors and require experimental improvement. Until now, existing theories of vortex effect don’t provide an adequate response to phenomena observed in experiments. In this paper have been presented examples of enthalpy balance disorders during operation of three-flow vortex tubes on hydrocarbon gases, as well as two-flow vortex tubes on air, based on analytical and critical analysis of a large number of various authors’ studies. Has been proposed shock wave and pulsation hypothesis for description of vortex effect and its main demonstrations. It has been shown that the proposed hypothesis can complement existing theories of vortex effect, and its accounting allows explain these processes. Have been presented thermodynamic characteristics of a bench double-flow vortex tube in laboratory experiment. Have been performed measurements of amplitude-frequency characteristics of vibrations performing external (mechanical) work under effect of gas-dynamic pulsations in vortex tubes. It has been demonstrated that vibration leads to gas kinetic energy dissipation into environment, resulting in enthalpy imbalance on the vortex tube. Has been performed analysis of additional cooling capacity, as well as heating of the vortex pipe mixed flow compared to throttling effect. The mechanism of shock wave and pulsation processes has been explained qualitatively based on analysis of a large number of various authors’ works and own experimental studies. It is emphasizing that the proposed qualitative mechanism requires further development and mathematical description based on the developed physical model.
vortex tube, vortex effect, enthalpy imbalance, pulsation, vibration, dissipation, shock wave mechanism, gases stratification
1. Piralishvili Sh.A. Vihrevoj effect. (Fizicheskoe yavlenie, eksperiment, teoreticheskoe modelirovanie) [(Physical phenomenon, experiment, theoretical modeling)]. Moscow: Nauchtekhlitizdat Publ., 2013, V. 1, 337 p. (in Russian).
2. Hilsch R.. Die Expansion von Gasen im Zentrifugalfeld als Kälteprocess // Zeitschrift fur Naturforschung. 1946. Jan. S. 203.
3. Biryuk V.V., Veretennikov S.V., Gur'yanov A.I., Piralishvili Sh.A. Vihrevoj effekt. Tekhnicheskie prilozheniya [Vortex effect.Technical Applications]. Moscow: Nauchtekhlitizdat Publ., 2014, V. 2, 491 p. (in Russian).
4. Devisilov V.A., Zhidkov D.A., Spiridonov V.S., Kirikova O.V. Ekspluataciya regulirue-myh vihrevyh trub Ranka-Hilsha v ekologicheski znachimyh promyshlennyh ustanovkah ochistki gazov (analiticheskij obzor) [Operation of adjustable Rank-Hillsch vortex tubes in environmentally significant industrial gas treatment plants (analytical review)]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2013, I. 12, p. 14. (in Russian).
5. Ranque G.I. Experiences sur la Detente Girataire avec Productions Simultahees d` un Echappement d` Air chand at d` Air froid // Journal de Physique at le Radium. 1933. I. 7. R. 112.
6. Erdelyi J. Wirkung des Zentrifugalkraffeldes auf des Warmerustand dtr Gase, Erklarung der Ranque-Enscheinung-Forchund // Ingenierwesens. 1962. Bd. 28. I. 6. S. 181.
7. Alekseev T.S. O prirode effekta Ranka [On the nature of the Rank effect]. Inzhenerno-fizicheskij zhurnal [Engineering Physics Journal]. 1964, V. 7, I. 4, p. 1121. (in Russian).
8. Kalashnik M.V., Visheratin K.N. Ciklostroficheskoe prisposoblenie v zakruchennyh gazovyh potokah i vihrevoj effekt Ranka [Cyclostrophic device in swirling gas flows and the vortex effect of Rank]. ZhETF [JETP]. 2008, V. 133, I. 4, p. 935. (in Russian).
9. Gucol A.F. Effekt Ranka [The Rank Effect]. Uspekhi fizicheskih nauk [Advances in Physical Sciences]. 1997, V. 167, I. 6, p. 665. (in Russian).
10. Merkulov A.P. Vihrevoj effekt i ego primenenie v tekhnike [Vortex effect and its application in technology]. Moscow: Mashinostroenie Publ., 1969. 183 p. (in Russian).
11. Borisenko A.I., Kostikov O.N., Chumachenko V.I. O vliyanii vrashcheniya na turbulentnye pul'sacii [On the effect of rotation on turbulent pulsations]. Nekotorye voprosy issledovaniya vihrevogo effekta i ego promyshlennogo primeneniya. Trudy pervoj nauchno-tekhnicheskoj konferencii [Some questions of the study of the vortex effect and its industrial application. Proceedings of the first scientific and technical conference]. Kujbyshev: KuAI im. S.P. Korolyova Publ., 1974, p. 268. (in Russian).
12. Halatov A.A. Teploobmen i gidrodinamika v polyah massovyh sil: obzor rabot, vypolnennyh v ITTF NAN Ukrainy [Heat transfer and hydrodynamics in the fields of mass forces: a review of the work performed in ITTF NAS of Ukraine]. Promyshlennaya teplotekhnika [Industrial heat engineering]. 2011, V. 33, I. 6, p. 11. (in Russian).
13. Eiamsa-ard S., Promvonge P. Review of Ranyue-Hilsch effects in vortex tubes // Renewable and Sustainable Energy Reviews. 2008. I. 12. P. 1822.
14. Khait A.V., Noskov A.S., Lovtsov A.V., Alekhin V.N. Semi-empirical turbulence model for numerical simulation of swrled compressible flows observed in Ranque-Hilsch vortex tube // International journal of refrigeration. 2014. I. 48. P. 132.
15. Zhidkov M.A., Devisilov V.A., Zhidkov D.A, Kirikova O.V., Spiridonov V.S. Termodinamika effekta Ranka-Hilsha v trekhpotochnyh vihrevyh trubah [Thermodynamics of the Rank-Hills effect in three-stream vortex tubes]. Himicheskaya tekhnologiya [Chemical Technology]. 2014, I. 1, p. 25. (in Russian).
16. Zhidkov M.A., Devisilov V.A., Zhidkov D.A., Gusev A.P., Ryabov A.P. Trekhpotochnye vihrevye truby - ekologicheskaya znachimaya al'ternativa szhiganiyu poputnogo neftyanogo gaza na fakelah [Three-flow vortex tubes - an environmentally significant alternative to flaring associated petroleum gas in flares]. Bezopasnost' v tekhnosfere [Safety in the technosphere]. 2013, I. 3, p. 19. (in Russian).
17. Zhidkov D.A., Ivanov M.V., Devisilov V.A., Zhidkov M.A. Udarno-volnovye (pul'sacionnye) proyavleniya processa stratifikacii gazovoj sredy v vihrevyh trubah Ranka-Hilsha [Shock-wave (pulsation) manifestations of the process of stratification of a gaseous medium in Rank-Hills vortex tubes]. Himicheskaya tekhnologiya [Chemical Technology]. 2015, I. 8, p. 501. (in Russian).
18. Sprenger H. Beobachtung an Wirbelrohren // Zeitschrift fuer Mathematik und Physik. 1951. V. 2. I. 4, p. 293.
19. Fin'ko V.E. Osobennosti ohlazhdeniya i szhizheniya gaza v vihrevom potoke [Features of gas cooling and liquefaction in a vortex flow]. Zhurnal tekhnicheskoj fiziki [Journal of Technical Physics]. 1983, V. 53, I. 9, p. 1770. (in Russian).
20. Chizhikov Yu.V. Razvitie metodov rascheta i promyshlennoe ispol'zovanie vihrevogo effekta. Dokt. Diss [Development of calculation methods and industrial use of the vortex effect. Doct. Diss]. Moscow: MGTU im. N.E. Baumana Publ., 1999. 291 p. (in Russian).
21. Muhutdinov R.H. Effektivnost' vnedreniya vihrevyh apparatov (primenitel'no k neftekhimicheskim proizvodstvam) [The effectiveness of the introduction of vortex devices (in relation to petrochemical industries)]. Ufa: Reaktiv Publ. 2001. 342 p. (in Russian).
22. Gurin S.V. Razrabotka tekhnologii kvaziizotermicheskogo reducirovaniya davleniya dlya ob"ektov sistemy transportirovki i raspredeleniya prirodnogo gaza. Kand. Diss [Development of the technology of quasi-isothermal pressure reduction for objects of the system of transportation and distribution of natural gas. Cand. Diss]. Ufa: UGATU Publ., 2008. 111 p. (in Russian).
23. Zhidkov M., Gusev A., Betlinskij V., Soldatov P., Ovchinnikov V., Ryabov A. Trekhpotochnaya vihrevaya truba uspeshno ekspluatiruetsya na Kapitonovskom mestorozhdenii [Three-flow vortex tube is successfully operated at the Kapitonovskoye field]. OIL&GAS JOURNAL RUSSIA [OIL & GAS JOURNAL RUSSIA]. 2008, I. 1-2, p. 42. (in Russian).
24. Sprenger H.S. Uber thermische Effekte in Resonanzrohren // Mitteilungen aus dem Institut fur Aerodynamik. E.T.H. Zurich. 1954. I. 21, p. 18.
25. Ahmedov R.B., Balagula T.B., Rashidov F.K., Sakaev A.Yu. Aerodinamika zakruchennoj strui [Aerodynamics of a swirling jet]. Moscow: Energiya Publ., 1977. 238 p. (in Russian).
26. Tokarev G.P. Vliyanie osevyh skorostej na velichinu energeticheskogo razdeleniya [The effect of axial velocities on the magnitude of energy separation]. Vihrevoj effekt i ego primenenie v tekhnike: Materialy VI Vsesoyuznoj nauchno-tekhnicheskoj konferencii [Vortex effect and its application in technology: Materials of the VI All-Union Scientific and Technical Conference]. Samara: SGAU im. S.P. Korolyova Publ., 1993, p. 51. (in Russian).
27. Knysh Yu.A. Fizicheskaya model' yavleniya energoperenosa v vihrevoj trube [A physical model of the phenomenon of energy transfer in a vortex tube]. Materialy III Vsesoyuznoj nauchno-tekhnicheskoj konferencii [Materials of the III All-Union Scientific and Technical Conference]. Kujbyshev: KuAI im. S.P. Korolyova Publ., 1981, p. 29. (in Russian).
28. Beliavsky Y. Experimental investigation of a temperature separation effect inside a short vortex chamber // Proceedings of the 9-th International Conference on Heat Transfer. Fluid Mechanics and Thermodynamics. Malta: 2012. R. 1482.
29. Dyskin L.M. Obosnovanie, razrabotka i povyshenie effektivnosti sistem osushki i kondicionirovaniya vozduha. Dokt. Diss [Justification, development and improvement of the efficiency of drying and air conditioning systems. Doct. Diss]. Leningrad: Leningradskij tekhnologicheskij institut holodil'noj promyshlennosti Publ., 1990. 34 p. (in Russian).
30. Dyskin L.M. Eksperimental'nye harakteristiki vihrevyh mikrotrub [Experimental characteristics of vortex microtubes]. Materialy IV Vsesoyuznoj nauchno-tekhnicheskoj konferencii «Vihrevoj effekt i ego primenenie v tekhnike» [Materials of the IV All-Union Scientific and Technical Conference "Vortex Effect and its Application in Engineering"]. Kujbyshev: KuAI im. S.P. Korolyova Publ., 1984, p. 66. (in Russian).
31. Kuznecov V.I. Teoriya i raschet effekta Ranka [Theory and calculation of the Rank effect]. Omsk: OmGTU Publ., 1995. 217 p. (in Russian).
32. Litvinov I.V., Shtork S.I., Alekseenko S.V. Eksperimental'noe issledovanie sil'no-zakruchennogo techeniya v tangencial'nom zavihritele [An experimental study of a strongly swirling flow in a tangential swirler]. Vestnik KuzGTU. Teplofizika [Bulletin of KuzGTU. Thermophysics]. Kuzbass: KuzGTU Publ., 2012, I. 3, p. 129. (in Russian).
33. Piralishvili Sh.A. Vihrevoj effekt. Sostoyanie i perspektivy [Vortex effect. Status and prospects]. Sbornik dokladov. Mezhdunarodnaya konferenciya «Teploobmen i gidrodinamika v zakruchennyh potokah» [Collection of reports. International Conference “Heat Transfer and Hydrodynamics in Swirl Flows”]. Kazan': Nauchtekhlitizdat Publ., 2015, p. 135. (in Russian).
34. Beliavsky Y. The Pressure Gradient Elastic Wave: Energy transfer process for compressible fluids with pressure gradient // Journal of Mechanics Engineering and Automation. V. 3, I. 1, 2013. R. 53.
35. Parulekar B.B. Shokt vortex tube // J. of Refrigeration. 1961. V. 4. I. 4. R. 74.
36. Martynov A.V., Brodyanskij V.M. Chto takoe vihrevaya truba? [What is a vortex tube?]. Moscow: Energiya Publ., 1976. 153 p. (in Russian).
37. Borisenko A.I., Vysochin V.A., Safonov V.A. O svyazi vneshnih harakteristik vihrevoj truby s vidami vozdejstviya na potok v ee goryachem uchastke [On the relationship of the external characteristics of a vortex tube with the types of impact on the flow in its hot section]. Materialy II Vsesoyuznoj nauchno-tekhnicheskoj konferencii «Vihrevoj effekt i ego primenenie v tekhnike» [Materials of the II All-Union Scientific and Technical Conference "Vortex Effect and its Application in Engineering"]. Kujbyshev: KuAI Publ., 1976, p. 62. (in Russian).
38. GOST 30457-97 Akustika. Opredelenie urovnej zvukovoj moshchnosti istochnikov shuma na osnove intensivnosti zvuka [GOST 30457-97 Acoustics. Determining sound power levels of noise sources based on sound intensity]. Moscow: 1997. 16 p. (in Russian).
39. Knysh Yu.A., Lukachev S.V. Eksperimental'noe issledovanie vihrevogo generatora zvuka [An experimental study of a vortex sound generator]. Akusticheskij zhurnal [Acoustic Journal]. 1977, V. XXIII, I. 5, p. 776. (in Russian).
40. Bondarenko V.L. Sozdanie i issledovanie volnovyh kriogeneratorov i ih primenenie v tekhnologii polucheniya neona vysokoj chistoty. Dokt. Diss [Creation and research of wave cryogenerators and their application in high-purity neon technology. Doct. Diss]. Moscow: MGTU im. N.E. Baumana Publ., 2003. 293 p. (in Russian).
41. Hartmann J. The Hartmann acoustic generators // Engineering. 1936, V. 142. P. 491.
42. Munin A.G., Cheremuhin G.A., Shipov R.A. Akusticheskie harakteristiki sverhzvukovyh passazhirskih samoletov [Acoustic characteristics of supersonic passenger aircraft]. Rimskij-Korsakov A.V. Aeroakustika [Rimsky-Korsakov A.V. Aeroacoustics]. Moscow: Nauka Publ., 1980. 144 p. (in Russian).
43. Hmelev V.N., Slivin A.N., Barsukov R.V., Cyganok S.N., Shalunov A.V. Primenenie ul'trazvuka vysokoj intensivnosti v promyshlennosti [The use of high intensity ultrasound in industry]. Bijsk: AltGTU Publ., 2010. 176 p. (in Russian).
44. Shtym A.N. Aerodinamika ciklonno-vihrevyh kamer [Aerodynamics of cyclone-vortex chambers]. Vladivostok: Dal'nevostochnyj universitet Publ., 1985. 199 p. (in Russian).
45. Lukachev S.V., Matveev S.G. Nekotorye rezul'taty eksperimental'nogo issledovaniya regulyarnyh kolebaniya davleniya, voznikayushchih pri rabote vihrevoj truby Ranka [Some results of an experimental study of regular pressure fluctuations that occur during operation of the Rank vortex tube]. Materialy III Vsesoyuznoj nauchno-tekhnicheskoj konferencii «Vihrevoj effekt i ego promyshlennoe primenenie» [Materials of the III All-Union Scientific and Technical Conference "Vortex Effect and Its Industrial Application"]. Kujbyshev: KuAI Publ., 1981, p. 109. (in Russian).
46. Lukachev S.V. Obrazovanie vihrevyh kogerentnyh struktur v vihrevoj trube Ranka [Formation of vortex coherent structures in a Rank vortex tube]. Materialy IV Vsesoyuznoj nauchno-tekhnicheskoj konferencii «Vihrevoj effekt i ego primenenie v tekhnike» [Materials of the IV All-Union Scientific and Technical Conference "Vortex Effect and its Application in Engineering"]. Kujbyshev: KuAI Publ., 1984, p. 38. (in Russian).
47. Frolov K.V. Zashchita ot vibracii i udarov [Protection against vibration and shock]. Moscow: Mashinostroenie Publ., 1881, V. 6, 456 p. (in Russian).
48. Sizov M.A. Pul'siruyushchie gazovye potoki i ih vzaimodejstvie s poverhnostyami. Kand. Diss [Pulsating gas flows and their interaction with surfaces. Cand. Diss]. St. Petersburg: BGTU «Voenmekh» Publ., 2005. 84 p. (in Russian).
49. Volov V.T. Termodinamika i teploobmen sil'no zakruchennyh sverhzvukovyh potokov gaza v energeticheskih ustrojstvah i apparatah [Thermodynamics and heat transfer of strongly swirling supersonic gas flows in energy devices and apparatuses]. Samara: SNC RAN Publ., 2006. 321 p. (in Russian).
50. Ahmetov Yu.A., Zangirov E.I., Svistunov A.V. Vozmozhnyj mekhanizm techeniya zakruchennyh potokov [A possible mechanism for the flow of swirling flows]. Trudy MFTI [Transactions of Moscow Institute of Physics and Technology]. 2014, V. 6, I. 2, p. 99. (in Russian).
51. Artamonov N.A. Intensifikaciya teplomassoobmennyh processov v apparatah s zakruchennym techeniem faz. Dokt. Diss [Intensification of heat and mass transfer processes in devices with a swirling phase flow. Doct. Diss]. Moscow: MIHM Publ., 1988. 32 p. (in Russian).
52. Bobrov D.M. Primenenie apparatov pul'sacionnogo ohlazhdeniya gaza v gazovoj promyshlennosti [Application of pulsating gas cooling apparatus in the gas industry]. Obzornaya informaciya. VNIIEgazprom [Overview. VNII Egazprom]. Moscow: 1985, I. 7, 58 p. (in Russian).
53. Merkulov A.P. Ot redaktora [From the editor]. Materialy V Vsesoyuznoj nauchno-tekhnicheskoj konferencii «Vihrevoj effekt i ego primenenie v tekhnike» [Materials of the V All-Union Scientific and Technical Conference "Vortex Effect and its Application in Engineering"]. Kujbyshev: KuAI Publ., 1988, p. 3. (in Russian).
54. Visheratin K.N., Vasiljev V.I., Kolomiets S.M., Zarenkov A.A. Increasing Ranque vortex tube cold production efficiencyby twisted air flow disturbance // International Heat Powered Cycles Conference Cyprus. ISBN 01874418353, CD-ROM, pdf, 2004. October. R. 1203.
55. Kirpichenko V.E. Issledovanie rabochego processa krupnomasshtabnoj vihrevoj truby. Kand. Diss [Study of the working process of a large-scale vortex tube. Cand. Diss]. Har'kov: Har'kovskij politekhnicheskij institute Publ., 1992. 19 p. (in Russian).
56. Sokolov A.I., Ivanov I.E. Issledovanie pul'sacionnyh rezhimov techeniya v diskovom generatore Gartmana [Investigation of pulsating flow regimes in a Hartmann disk generator]. Elektronnyj zhurnal. Trudy MAI [Electronic Journal. Proceedings of the Moscow Aviation Institute]. 2006. (in Russian).
57. Sokolov A.I. Raschetnoe issledovanie gazodinamicheskogo techeniya v diskovom generatore Gartmana. Kand. Diss [Computational study of the gas-dynamic flow in a Hartmann disk generator. Cand. Diss]. Moscow, 2006. (in Russian).
58. Rusak A.M., Ahmetov Yu.M. Issledovanie i primenenie vihrevyh tekhnologij na kafedre PGM UGATU [Research and application of vortex technologies at the department of PGM USATU]. Vestnik UGATU [Vestnik of USATU]. Ufa, 2012, V. 16, I. 2 (47), p. 151. (in Russian).
59. Lovcov A.V. Vihrevaya truba Patent na izobretenie № 2370710. Kl. MPK-F25B9/04. 20.10.2009 [Vortex tube. Patent for invention No. 2370710. Cl. MPK-F25B9 / 04. 10/20/2009]. (in Russian).
60. Hait A.V. Issledovanie effekta energorazdeleniya s cel'yu uluchsheniya harakteristik vihrevoj truby. Kand. Diss [Investigation of the effect of energy separation in order to improve the characteristics of the vortex tube. Cand. Diss]. Ekaterinburg: FGAOU Publ., 2012. 199 p. (in Russian).
61. Komarova G.A. Issledovanie vihrevogo effekta pri vysokih davleniyah. Kand. Diss [The study of the vortex effect at high pressures. Cand. Diss]. Moscow: GIAP Publ., 1978. 181 p. (in Russian).
62. Ahmetov Yu.M. Issledovanie vliyaniya tormoznogo ustrojstva na strukturu potoka i parametry izotermicheskogo vihrevogo regulyatora davleniya [Investigation of the effect of a braking device on the flow structure and parameters of an isothermal vortex pressure regulator]. Ufa: Vestnik UGATU Publ., 2011, V. 15, I. 4 (44), p. 149. (in Russian).
63. Kashina I.A. Vliyanie dissipativnyh svojstv konstruktivnyh elementov RDTT na amplitudu kolebanij davleniya v kamere sgoraniya pri prodol'noj akusticheskoj neustojchivosti. Kand. Diss [Influence of dissipative properties of solid-state solid propellant components on the amplitude of pressure fluctuations in the combustion chamber with longitudinal acoustic instability. Cand. Diss]. Kazan': Permskij politekhnicheskij universitet Publ., 2015. 163 p. (in Russian).
64. Torocheshnikov N.S., Lejtes I.L., Brodyanskij V.M. Issledovanie effekta temperaturnogo razdeleniya vozduha v pryamotochnoj vihrevoj trube [Investigation of the effect of temperature separation of air in a direct-flow vortex tube]. ZhTF [ZhTF]. 1958, V. XXYIII, I. 6, p. 1229. (in Russian).
65. Popovich S.S. Eksperimental'noe issledovanie vliyaniya udarnyh voln na effekt bezmashinnogo energorazdeleniya gazovyh potokov [An experimental study of the effect of shock waves on the effect of machine-less energy separation of gas flows]. Elektronnyj zhurnal «Nauka i Obrazovanie». MGTU im N.E. Baumana [Electronic Journal "Science and Education". MSTU named after N.E. Bauman]. 2016, I. 3, pp. 64-80. (in Russian).
66. Victor S. Vlasenko, Vacheslav V. Slesarenko, Alexsander N. Gulkov. Using of Triple-Flow Vortex Tubes in Associated Petroleum Gas Preparation Units // Proceedings of the Twenty-sixth (2016), International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016. P.46-52.
67. Kochetkov Yu.M., Borovik I.N., Podymova O.A., Mavrov V.A., Ishaev R.O. Vihrevye effekty v vihrevyh trubah Ranka-Hilsha [Vortex effects in Rank-Hills vortex tubes]. Vestnik MAI [Bulletin of the Moscow Aviation Institute]. V. 23, I. 4, 2016, pp. 26-35. (in Russian).
68. Volkan Kirmaci, Huseyin Kaya, Ismail Cebeci. An experimental and exergy analysis of a thermal performance of a counter flow Ranque-Hilsch vortex tube with different nozzle materials // International journal of refrigeration, I. 85, 2018, pp. 240-254.