GRNTI 76.03 Медико-биологические дисциплины
GRNTI 76.33 Гигиена и эпидемиология
OKSO 14.04.02 Ядерные физика и технологии
OKSO 31.06.2001 Клиническая медицина
OKSO 31.08.08 Радиология
OKSO 32.08.12 Эпидемиология
BBK 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
BBK 534 Общая диагностика
TBK 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
TBK 5712 Медицинская биология. Гистология
TBK 5734 Медицинская радиология и рентгенология
TBK 6212 Радиоактивные элементы и изотопы. Радиохимия
Introduction 1. General requirements to PET-radionuclides 2. Parameters of radionuclide ranging for application in PET 3. Positron emitters for different applications. Selection criteria - PET-studies - Joint PET- and SPECT-studies - Theranostics - Special applications 4. Availability of positron emitters - Cyclotron production of PET-radionuclides - Conventional radionuclides - Radionuclides under development - Production of PET-radionuclides on radionuclide generators 5. Future development of PET providing with radionuclides Conclusion
PET, positron emitters, activity, cyclotron, radionuclide generator
1. Townsend DW, Carney JPJ, Yap JT and Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(1):4S-14S.
2. Saha GB. Basics of PET Imaging. Physics, chemistry and regulation. 2nd ed. New York: Springer; 2010. 241 p.
3. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: WB Saunders; 2012. 523 p.
4. Khmelev V. Positron emission tomography: physical and technical aspects. Moscow: Trovant; 2016. 336 p. (In Russian).
5. Chart of the Nuclides. Available from: http://www.nndc.bnl.gov
6. Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40:155-66.
7. Kostylev VA, Narkevich BYa. Medical Physics. Moscow: Meditsina; 2008. 460 p. (In Russian).
8. Nuclear Physics for Medicine. Chapter III. Radioisotope production. Ed. by F Azaiez, A Bracco, J Dobeš, A Jokinen, G-E Körner, A Maj, A Murphy, P Van Duppen. Strasbourg: European Science Foundation. 2015. 156 p.
9. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report № 468. Vienna: IAEA. 2009.
10. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161-9.
11. Rosch F, Knapp FF (Russ). Radionuclide generators. In: Handbook of Nuclear Chemistry. V.4. Ed. by A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011: 1935-76.
12. Shimchuk GrG, Shimchuk GG, Kutuzov SG, et. al. Automatized generator system of clinical application for bolus and long-term injections of chloride 82Rb. Medical Physics. 2013;(2):67-75. (In Russian).
13. Miller PW, Nicholas J, Long NJ, Gee AD. Synthesis of 11C, 18F, 15O and 13N radiolabels for positron emission tomography. Angew Chem Int Ed. 2008;47(47):8998-9033.
14. Beyer G-J, Comor JJ. The potential of PET cyclotron installations for the production of uncommon positron emitting isotopes. In: Int Conf Clin PET and Molecular Nucl Med. 2007 Nov 10-14; Bangkok: 2007; 54-55.
15. Papash A, Alenitsky Yu. On commercial H- cyclotrons up to 30 MeV energy range for production of medicine isotopes. Problems Atomic Sci. and Technol. 2008;(5):143-5.
16. Schmor PW. Review of cyclotrons used in the production of radioisotopes for biomedical applications. In: Proceedings of Cyclotrons 2010. Lanzhou: 2010. 419-24.
17. Qaim SM. Cyclotron production of medical radionuclides. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1903-1933.
18. Kodina GE, Krasikova RN. Methods of production of radiopharmaceuticals and radionuclide generators for nuclear medicine. Moscow: MEI Publishing House; 2014. 282 p. (In Russian).
19. Khmelev AV. Nuclear medicine: physics, equipment, technologies. Moscow: NRNU MEPhI; 2018. 440 p. (In Russian).
20. Antoni G, Kihlberg T, Langstrom B. 11C: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1977-2021.
21. Ross TL, Wester HJ. 18F: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 2022-71.
22. Kilian K. 68Ga DOTA and analogs: current status and future perspectives. Rep Pract Oncol Radiother. 2014;19(L):S13-S21.
23. Velikyan I. Positron emitting [68Ga]Ga based imaging agents: chemistry and diversity. Med Chem. 2011;7(5):345-79.
24. Davidson CD, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200-27.
25. Severin GW, Engle JW, Nickles RJ, Barnhart TE. 89Zr radiochemistry for PET. Med Chem. 2011;7(5):389-94.
26. Walther M, Gebhardt P, Grosse-Gehling P, et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl Rad Isot. 2011;69:852-7.
27. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686-718.
28. Stocklin G, Pike VW. Radiopharmaceuticals for positron emission tomography: methodological aspects. New York; 1993. 178 p.
29. Dmitriev SN, Zaitseva NG, Ochkin AV. Radionuclides for nuclear medicine and ecology. Dubna UINR; 2001. 103 p. (In Russian).
30. Chopra D. Radiolabeled nanoparticles for diagnosis and treatment of cancer. In: Radioisotopes - applications in bio-medical science. Chapter 11. Ed. N. Singh. 2011: available from: http: //www.intechopen.com/books/radioisotopes-applications-in-bio-medical-science/radiolabeled-nanoparticles-for-diagnosis-and-treatment-of-cancer.
31. Veryevkin AA, Stervoedov NG, Kovtun GP. Production and application short lived and ultra-short lived isotopes in medicine. Reporter of Kharkiv University. 2006;(746):54-64. (In Russian).
32. Kurenkov NV, Shubin YN. Radionuclides in nuclear medicine. Medical Radiology. 1996;41(5):54-63. (In Russian).
33. Narkevich BYa. Single photon emission computer tomography with positron emitting radioparmaceuticals: status and growth area. Medical Radiology and Radiation Safety. 2000;45(6):56-63. (In Russian).
34. Rosch F, Baum RB. Generator-based PET radiopharmaceuticals for molecular imaging of tumors: on the way to theranostics. Dalton Transactions. 2011; 40(23):6104-11.
35. Rosch F., Riss P. The Renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry // Curr. Top. Med. Chem. 2010. Vol. 10. №16. R.1633-1668.
36. Rosch F, Riss P. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633-68.
37. Ellison PA, Chenb F, Barnharta TE, Nickles RJ, Caia W, De Jesus OT. Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents. In: WTTC15 Proc. Prague: 2014. 110-1.
38. Wooten AL, Lewis BC, Laforest R, Smith SV, Lapi SE. Cyclotron production and PET/MRI imaging of 52Mn. In: WTTC15 Proc. Prague: 2014. 97-9.
39. Xing Y, Zhao J, Shi X, Conti P.S, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol. 2014;2(2):1016-25.
40. Bogdanov PV, Vorogushin MF, Lamzin EA, et al. Development of compact cyclotrons CC-18/9, CC-12 and MCC-30/15 for production of medical radionuclides. J Tech Phys. 2011;81(10):68-83. (In Russian).
41. Wolf AP, Jones WB. Cyclotrons for biomedical radioisotope production. Radiochimica Acta. 1983;34(1/2):1-7.
42. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301-27.
43. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018; 3(1):35-46.
44. Bakhtiari M, Enferadi M, Sadeghi M. Accelerator production of the positron emitter 89Zr. Annals of Nuclear Energy. 2012; 41:93-107.
45. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009; 36(7):729-39.
46. McCarthy DW, Shefer RE, Klinkowstein RE, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997; 24:35-49.
47. Pandey MK, Byrne JF, Jiang H, Packard AB, De Grado TR. Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging. 2014;4(4):303-10.
48. Walczak R, Krajewski S, Szkliniarz K, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys. 2015; 2:33-43.
49. Qaim M. Development of cyclotron radionuclides for medical applications: from fundamental nuclear data to sophisticated production technology. In: Proc of 15th Int Workshop on targetry and target chemistry. Prague: 2014. 18-20.
50. Pillai MRA, Dash A, Knapp FFJr. Radionuclide generator: ready source diagnostic and therapeutic radionuclides for nuclear medicine applications. In: Radiopharmaceuticals: application, insights and future. Ed. by R Santos-Oliveria. Lambert Academic Publishing. 2016. 63-118.
51. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010; 98(3):149-56.
52. Jalilian AR. The application of unconventional PET tracers in nuclear medicine. Iran J Nucl Med. 2009; 17(1):1-11.
53. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
54. Tlostanova MS, Khodjibekova MM, Panfilenko AA, et al. Capabilities of combined positron emission and computer tomography in diagnosis of neuroendocrine tumors: first experience of using of native synthesis module 68Ga DOTA-TATE. STM. 2016; 8(4):51-8. (In Russian).
55. Severin GW, Fonslet J, Jensen AI, Zhuravlev F. Hydroliticaly stable titanium-45. In: WTTC15 Proc. Prague: 2014. 103-6.
56. Weineisen M, Schottelius M, Simecek J, et al. 68Ga and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostics concept and first proof-of-concept human studies. J Nucl Med. 2015; 56(8):1169-76.
57. Devillet FG, Geets J-M, Ghyoot M, et al. Performance of IBA new conical shaped niobium [18O] water targets. In: Cyclotrons 2013 Proc. Vancouver: 2013. 406-8.
58. Zeisler SK, Becker DW, Pavan RA, et al. A water-cooled spherical niobium target for the production of [18F] fluoride. Appl Radiat Isot. 2000; 53(3):449-53.
59. Smith SV, Jones M, Holmes V. Production and selection of metal PET radioisotopes for molecular imaging. In: Radioisotopes - applications in biomedical science. Chapter 10. Ed. N. Singh. 2011: available from: http: //www.intechopen. com/books/radioisotopes-applications-in-bio-medical-science/production-and-selection-of-metal-pet-radioisotopes-for-molecular imaging.
60. Hoehr C, Oehlke E, Hou H, et al. Production of radiometals in liquid target. In: WTTC15 Proc. Prague: 2014. P. 41-2.
61. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
62. Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.