from 01.01.2017 until now
Krasnoyarsk, Russian Federation
from 01.01.2014 until now
D.Mendeleev University of Chemical Technology of Russia (department of Chemistry of High Energy and Radioecology, dosent)
from 01.01.2014 until now
D.Mendeleyev University of Chemical Technology of Russia (kafedra himii vysokih energiy i radioekologii, dosent)
Moskva, Moscow, Russian Federation
Dmitry Mendeleev University of Chemical Technology of Russia (docent)
Russian Federation
The biomedical aspects for the use of nanomaterials obtained by «green nanotechnologies» methods for the diagnosis and treatment of various diseases have been considered. The following advantages of «green nanomaterials» have been noted: product’s low cost, production cycle’s short duration, safety, possibility of the nanoparticle surface modification during manufacturing process. Problems in the «green nanotechnologies» development have been discussed, primarily caused by the lack of measures for standardization and classification of observed therapeutic effects depending on synthesis peculiarities, structure and properties of «green nanomaterials». It has been shown the prospects for the «green nanomaterials» use in the treatment of oncological diseases by methods of photodynamic and photothermal therapy, magnetic resonance imaging, creation of biosensors and antibacterial coatings on the surface of medical materials for the fight against infectious agents, etc. The possibility of «green nanomaterials» directed synthesis for the creation of personal-oriented drugs has been noted. It has been concluded that the medicine of future is, first of all, the personalized multifunctional one, the task of which is prevention, high-precision and timely diagnosis, as well as low-invasive, fast and effective treatment, and an individual safe pharmacological period of rehabilitation, in which drugs and treatment methods based on «green nanomaterials and nanotechnologies» will be widely used.
metal, oxide, nanoparticle, bionanoparticle, plant, microorganism, extract, recovery, synthesis, properties, medicine, therapy, diagnostics, colloid, solution
1. Mohammadlou M., Maghsoudi H., Jafarizadeh-Malmiri H. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. - International Food Research Journal, 2016, V. 23, No. 2. pp. 446 - 463
2. Jenkins Samir V., Muldoon Timothy J., Chen Jingyi. Plasmonic Nanostructures for Biomedical and Sensing Applications. Chapter 5 // in: Metallic Nanostructures / edited by Y. Xiong, X. Lu. Switzerland: Springer International Publishing, 2015, 304 p.
3. Klimov V.V. Nanoplazmonika [Nanoplasmonics]. Moscow: FIZMATLIT Publ., 2009. 480 p. (in Russian).
4. Wu Shufen, Yan Songjing, Qi Wei, Huang Renliang, Cui Jing, Su Rongxin, He Zhimin. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Research Letters, 2015, 10:213 DOI:https://doi.org/10.1186/s11671-015-0910-7
5. Anishchik V.M., Borisenko V.E., Zhdanok S.A., Tolochko N.K., Fedosyuk V.M. Nanomaterialy i nanotekhnologii [Nanomaterials and nanotechnology]. Minsk: BGU Publ., 2008. 375 p. (in Russian).
6. Borisenko V.E., Vorob'eva A.I., Danilyuk A.L., Utkina E.A. Nanoelektronika: teoriya i praktika [Nanoelectronics: theory and practice]. Moscow: BINOM. Laboratoriya znanij Publ., 2013. 366 p. (in Russian).
7. Nikitin S.A. Gigantskoe magnitosoprotivlenie. Sorosovskij obrazovatel'nyj zhurnal [Giant magnetoresistance. Soros educational journal]. 2004, V. 8, I. 2, pp. 92-98. (in Russian).
8. Lukashevich M.G., Nuzhdin V.I., Hajbullin R.I., Odzhaev V.B., Harchenko A.A. Superparamagnetizm nanoklasterov kobal'ta, poluchennyh ionnoj implantaciej v plenkah poliimida. Vestnik BGU. Seriya 1, Fizika. Matematika. Informatika [Superparamagnetism of cobalt nanoclusters obtained by ion implantation in polyimide films. Bulletin of BSU. Series 1, Physics. Maths. Computer science]. 2013, I. 2, pp. 32-36. (in Russian).
9. Mishra Mini, Chauhan Pratima. Nanosilver and its Medical Implications. Journal of Nanomedicine Research, 2015, V. 2, No. 5. pp. 00039-1 - 00039-10.
10. Shah Monaliben, Fawcett Derek, Sharma Shashi, Tripathy Suraj Kumar, Poinern Gérrard Eddy Jai. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 2015, V. 8, pp. 7278 - 7308 DOIhttps://doi.org/10.3390/ma8115377
11. Curtis A., Wilkinson C. Nanotechniques and approaches in biotechnology. Trends in Biotechnology, 2001, V. 19, No. 3. pp. 97 - 101.
12. Waren C.W., Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, V. 281, No. 5385. pp. 2016 - 2018 DOI:https://doi.org/10.1126/science.281.5385.2016
13. Vaseashta A., Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors. Science and Technology of Advanced Materials, 2005, V. 6, pp. 312-318 DOIhttps://doi.org/10.1016/j.stam.2005.02.018
14. Langer R. Drug delivery. Drugs on target. Science, Science, 2001, V. 293, No. 5527. pp. 58 - 59 DOI:https://doi.org/10.1126/science.1063273
15. Roy Krishnendu, Mao Hai-Quan, Huang Shau-Ku, Leong Kam W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 1999, V. 5, No. 4. pp. 387 - 391 https://doi.org/10.1038/7385
16. Sachlos Eleftherios, Risuen˜o Ruth M., Laronde Sarah, Shapovalova Zoya, Lee Jong-Hee, Russell Jennifer, Malig Monika, McNicol Jamie D., Fiebig-Comyn Aline, Graham Monica, Levadoux-Martin Marilyne, Lee Jung Bok, Giacomelli Andrew O., Hassell John A., Fischer-Russell Daniela, Trus Michael R., Foley Ronan, Leber Brian, Xenocostas Anargyros, Brown Eric D., Collins Tony J., Bhatia Mickie. Identification of Drugs Including a Dopamine Receptor Antagonist that Selectively Target Cancer Stem Cells. Cell, 2012, V. 149, No. 6. pp. 1284 - 1297 DOI:https://doi.org/10.1016/j.cell.2012.03.049
17. Qazi Umair Yaqub, Javaid Rahat. A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Advances in Nanoparticles, 2016, V. 5. pp. 27 - 43 http://dx.doi.org/10.4236/anp.2016.51004
18. Gasparyan Vardan. Preparation and application of various nanoparticles in biology and medicine. Nanotechnology Development, 2013, V. 3, No. 2. pp. 6 - 11
19. Farokhzad Omid C., Cheng Jianjun, Teply Benjamin A., Sherifi Ines, Jon Sangyong, Kantoff Philip W., Richie Jerome P., Langer Robert. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences, 2006, V. 103, No. 16. pp. 6315 - 6320 DOI:https://doi.org/10.1073/pnas.0601755103
20. Stoimenov Peter K., Klinger Rosalyn L., Marchin George L., Klabunde Kenneth J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir, 2002, V. 18, No. 17. pp. 6679 - 6686 DOI:https://doi.org/10.1021/la0202374
21. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, V. 275, No. 1. pp. 177 - 182 DOI https://doi.org/10.1016/j.jcis.2004.02.012
22. Panáček Aleš, Kvítek Libor, Prucek Robert, Kolář Milan, Večeřová Renata, Pizúrová Naděžda, Sharma Virender K., Nevěčná Tat‘jana, Zbořil Radek. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. The Journal of Physical Chemistry B, 2006, V. 110, No. 33. pp. 16248-16253 DOI:https://doi.org/10.1021/jp063826h
23. Morones Jose Ruben, Elechiguerra Jose Luis, Camacho Alejandra, Holt Katherine, Kouri Juan B., Ram´ırez Jose Tapia, Yacaman Miguel Jose. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, V. 16, No. 10. pp. 2346 - 23453 DOI:https://doi.org/10.1088/0957-4484/16/10/059
24. Baker P.W., Tanaka K.K.K., Klitgord N., Cripps R.M. Adult myogenesis in Drosophila melanogaster can proceed independently of myocyte enhancer factor-2. Genetics, 2005, V. 170, No. 4. pp. 1747-1759https://doi.org/10.1534/genetics.105.041749
25. Barraud Perrine, Stott Simon, Møllga˚rd Kjeld, Parmar Malin, Bjo¨rklund Anders. In Vitro Characterization of a Human Neural Progenitor Cell Coexpressing SSEA4 and CD133. Journal of Neuroscience Research, 2007, V. 85, No. 2. pp. 250 - 259 DOI:https://doi.org/10.1002/jnr.21116
26. Cheng X., Xu Z., Wang J., Zhai Y., Lu Y., Liang C. ATP-dependent pre-replicative complex assembly is facilitated by Adk1p in budding yeast. Journal of Biological Chemistry, 2010, V. 285, No. 39. pp. 29974 29980 DOI:https://doi.org/10.1074/jbc.M110.161455
27. Chithrani D.B., Jelveh S., Jalali F., van Prooijen M., Allen C., Bristow R.G., Hill R.P., Jaffray D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 2010, V. 173, No. 6. pp. 719 - 722 DOI:https://doi.org/10.1667/RR1984.1
28. Dong Jang Hee, Kim Sun Kyung, Chang Hankwon, Choi Jeong-Woo, Luo Jiayan, Huang Jiaxing. One-Step Synthesis of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of Their Electrocatalytic Activity. Aerosol Science and Technology, 2013, V. 47, pp. 93 - 98 DOI:https://doi.org/10.1080/02786826.2012.728302
29. Lockman P.R., Koziara J.M., Mumper R.J., Allen D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting, 2004, V. 12, No. 9 - 10. pp. 635 - 641 DOI:https://doi.org/10.1080/10611860400015936
30. Lamprecht M.R., Sabatini D.M., Carpenter A.E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques, 2007, V. 42, No. 1. pp. 71 - 75 DOI:https://doi.org/10.2144/000112257
31. Ozay O., Ekici S., Baran Y., Kubilay S., Aktas N., Sahiner N. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 2010, V. 260, No. 1-3. pp. 57 - 64 https://doi.org/10.1016/j.desal.2010.04.067
32. Parveen Mohamudha R., Harish B.N., Parija S.C. AMPC beta lactamases among gram negative clinical isolates from a tertiary hospital, South India. Brazilian Journal of Microbiology, 2010, V. 41, No. 3. pp. 596 - 602 DOI:https://doi.org/10.1590/S1517-83822010000300009
33. Zhang L., Chung B.Y., Lear B.C., Kilman V.L., Liu Y., Mahesh G., Meissner R.A., Hardin P.E., Allada R. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila. Current Biology, 2010, V. 20, pp. 591 - 599 DOI:https://doi.org/10.1016/j.cub.2010.02.056
34. Piletskaa Elena V., Chianellab Iva, Turnerb Anthony P.F., Takayamac Kazuya, Thaveeprungsripornc Visit, Piletsky Sergey A. Optical biosensors based on universal pH indicator as a reporter forquantification of clinically relevant compounds. Journal of the Chinese Advanced Materials Society, 2014, V. 2, No. 2. pp. 99 - 109 https://doi.org/10.1080/22243682.2014.910474
35. Chena Juanrong, Zhang Ying, Chang Jun, Cheng Li, Cao Shunsheng. Recent advances in silica-based biosensors: a review. Journal of the Chinese Advanced Materials Society, 2015, V. 3, No. 4. pp. 257 - 269 DOI:https://doi.org/10.1080/22243682.2015.1088795
36. Dykman L.A., Shchyogolev S.Yu. Vzaimodejstvie rastenij s nanochasticami blagorodnyh metallov (obzor). Sel'skohozyajstvennaya biologiya [Interaction of plants with noble metal nanoparticles (review). Agricultural biology]. 2017, V. 52, I. 1, pp. 13-24. DOI:https://doi.org/10.15389/agrobiology.2017.1.13rus. (in Russian).
37. Synthesis and characterization of silver nanoparticles using leaf extract of Azadirachta indica. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Life Science by Tamasa Panigrahi 411LS2058 under the supervision of Dr. Suman Jha. India, Orissa, Rourkela-769008: Department of Life science National institute of technology, 2013, 70 p.
38. Fedorova O.A. \"Zelenyj sintez\" nanochastic metallov ["Green synthesis" of metal nanoparticles]. Nauchnoe soobshchestvo studentov XXI stoletiya. TEHNIChESKIE NAUKI: Cbornik statej po materialam XLII mezhdunarodnoj studencheskoj nauchno-prakticheskoj konferencii № 5(41) [Scientific community of students of the XXI century. TECHNICAL SCIENCES: Collection of articles based on the materials of the XLII international student scientific-practical conference No. 5 (41)]. Available at: https://sibac.info/archive/technic/5(41).pdf (accessed 06 May 2019). (in Russian).
39. Egorova E.M., Kubatiev A.A., Shvec V.I. Biologicheskie effekty nanochastic metallov [Biological effects of metal nanoparticles]. Moscow: Nauka Publ., 2014. 350 p. (in Russian).
40. Rónavári Andrea, Kovács Dávid, Igaz Nóra, Vágvölgyi Csaba, Boros Imre Miklós, Kónya Zoltán, Pfeiffer Ilona, Kiricsi Mónika. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. International Journal of Nanomedicine, 2017, V. 12, pp. 871 - 883.
41. Rempel' A.A., Valeeva A.A. Materialy i metody nanotekhnologij [Materials and methods of nanotechnology]. Ekaterinburg: Ural'skii universitet Publ. 2015. 136 p. (in Russian).
42. Hassan Dalia M.A., Farghali Mohamed R.F. Adsorption of Silver Nanoparticles from Aqueous Solution by Multiwalled Carbon Nanotubes. Advances in Nanoparticles, 2017, V. 6, pp. 22 - 32 https://doi.org/10.4236/anp.2017.62003
43. Mackevich E.P., Prokop'ev S.L. Osobennosti agregacii nanochastic serebra v kolloidnyh rastvorah, sintezirovannyh borgidridnym metodom [Features of aggregation of silver nanoparticles in colloidal solutions synthesized by the borohydride method]. Vestnik BGU. Seriya 1, Fizika. Matematika. Informatika [Bulletin of BSU. Series 1, Physics. Maths. Computer science]. 2012, I. 2, pp. 52-56. (in Russian).
44. Nomoev Andrej Valer'evich. Mekhanizmy obrazovaniya, stroenie i fizicheskie svojstva nanorazmernyh struktur, poluchennyh oblucheniem elektronnymi puchkami. Dokt. Diss [Mechanisms of formation, structure and physical properties of nanoscale structures obtained by irradiation with electron beams. Doct. Diss]. Ulan-Ude: FGBOU VPO BGU Publ., 2012. 35 p. (in Russian).
45. Sergeev B.M., Kiryuhin M.V., Prusov A.N., Sergeev V.G. Poluchenie nanochastic serebra v vodnyh rastvorah poliakrilovoj kisloty [Obtaining silver nanoparticles in aqueous solutions of polyacrylic acid]. Vestnik Moskovskogo universiteta. Seriya 2. Himiya [Bulletin of Moscow University. Series 2. Chemistry]. 1999, V. 40, I. 2, pp. 129-133. (in Russian).
46. Leonov Ya.B., Przhibel'skij S.G., Vartanyan T.A. Obratimaya relaksaciya formy metallicheskih nanochastic i ee uskorenie pod dejstviem oblucheniya. Pis'ma v Zhurnal eksperimental'noj i teoreticheskoj fiziki [Reversible relaxation of the shape of metallic nanoparticles and its acceleration under the action of irradiation. Letters to the Journal of Experimental and Theoretical Physics]. 2010, V. 91, I. 3, pp. 136-139. (in Russian).
47. Geraldes Adriana Napoleão, da Silva Andressa Alves, Leal Jessica, Estrada-Villegas Gethzemani Mayeli, Lincopan Nilton, Katti Kattesh V., Lugão Ademar Benévolo. Green Nanotechnology from Plant Extracts: Synthesis and Characterization of Gold Nanoparticles. Advances in Nanoparticles, 2016, V. 5, pp. 176 - 185 http://dx.doi.org/10.4236/anp.2016.53019
48. Maciollek Arkadius, Ritter Helmut. One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer. Beilstein Journal of Nanotechnology, 2014, V. 5, pp. 380 - 385 DOIhttps://doi.org/10.3762/bjnano.5.44
49. Hyllested JesÆrøe, Palanco Marta Espina, Hagen Nicolai, Mogensen Klaus Bo, Kneipp Katrin. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents. Beilstein Journal of Nanotechnology, 2015. V. 6, pp. 293 - 299 DOI:https://doi.org/10.3762/bjnano.6.27
50. Patra Jayanta Kumar, Baek Kwang-Hyun. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. Journal of Nanomaterials, 2014, Article ID 417305, 12 pages http://dx.doi.org/10.1155/2014/417305
51. Madkour Loutfy H. Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization andpharmaceutical applications in biotechnology industry. Global Drugs and Therapeutics, 2018, V. 3, No. 1. pp. 1 - 11 DOI:https://doi.org/10.15761/GDT.1000144
52. Cherukula Kondareddy, Lekshmi Kamali Manickavasagam, Uthaman Saji, Cho Kihyun, Cho Chong-Su, Park In-Kyu. Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. Nanomaterials, 2016, V. 6, No. 76. 26 pages. DOIhttps://doi.org/10.3390/nano6040076
53. Gubin S.P., Koksharov Yu.A., Homutov G.B., Yurkov G.Yu. Magnitnye nanochasticy: metody polucheniya, stroenie i svojstva. Uspekhi himii [Magnetic nanoparticles: production methods, structure and properties. The success of chemistry]. 2005, V. 74, I. 6, pp. 539-574. (in Russian).
54. Baranov D.A., Gubin S.P. Magnitnye nanochasticy: dostizheniya i problemy himicheskogo sinteza. Radioelektronika. Nanosistemy. Informacionnye tekhnologii [Magnetic nanoparticles: achievements and problems of chemical synthesis. Radio Electronics Nanosystems. Information Technology]. 2009, V. 1, I. 1-2, pp. 129-146. (in Russian).
55. Herlekar Mihir, Barve Siddhivinayak, Kumar Rakesh. Plant-Mediated Green Synthesis of Iron Nanoparticles. Hindawi Publishing Corporation. Journal of Nanoparticles, 2014, Article ID 140614, 9 pages http://dx.doi.org/10.1155/2014/140614
56. Gorelkin P., Kalinina N., Lav A., Makarov V., Tal'yanskij M., Yaminskij I. Sintez nanochactic c icpol'zovaniem ractenij. Nanoindustriya [Synthesis of nanoparticles using plants. Nanoindustry]. 2012, V. 7, I. 37, pp. 16-22. (in Russian).
57. Liu Shilin, Hu Haoze, Zhou Jinping, Zhang Lina. Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals: preparation, characterization and properties. Cellulose, 2011, V. 18, pp. 1273 -1283 DOI:https://doi.org/10.1007/s10570-011-9566-3
58. German S.V. In vitro i in vivo vizualizaciya gidrozolej magnetita, magnitoliposom i magnitnyh mikrokapsul metodom magnitno-rezonansnoj hromatografii. Kand. Diss [In vitro and in vivo visualization of hydrosols of magnetite, magnetoliposomes and magnetic microcapsules by magnetic resonance chromatography. Cand. Diss]. Saratov: FGBOU VPO «Saratovskij GU im. N.G. Chernyshevskogo» Publ., 2015. 115 p. (in Russian).
59. Kuppusamy Palaniselvam, Yusoff Mashitah M., Maniam Gaanty Pragas, Govindan Natanamurugaraj. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmaceutical Journal, 2016, V. 24, No. 4. pp. 473 - 484 https://doi.org/10.1016/j.jsps.2014.11.013
60. Makarov V.V., Lav M., Sinicyna O.V., Makarova S.S., Yaminskij I.V., Tal'yanskij M.E., Kalinina N.O. «Zelenye» nanotekhnologii: sintez metallicheskih nanochastic s ispol'zovaniem rastenij. Acta naturae [Green nanotechnology: the synthesis of metal nanoparticles using plants. Acta naturae]. 2014, V. 6, I. 1 (20), pp. 37-47. (in Russian).
61. Lee J.H., Huh Y.-M., Jun Y.-W., Lee Jae-Hyun, Huh Yong-Min, Jun Young-wook, Seo Jung-wook, Jang Jung-tak, Song Ho-Taek, Kim Sungjun, Cho Eun-Jin, Yoon Ho-Geun, Suh Jin-Suck, Cheon Jinwoo. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. National Medicine, 2007, 13, 95 V. 13, No. 1. pp. 95 - 99 DOI:https://doi.org/10.1038/nm1467
62. Jurgons R., Seliger S., Hilpert A., Trahms L., Odenbach S., Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. Journal of Physics Condensed Matter, 2006, V. 18, pp. S2893 - S2902 DOIhttps://doi.org/10.1088/0953-8984/18/38/S24
63. Berry C.C., Curtis A.C.G. Functionalization of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003, V. 36, No. 13. pp. R198 https://doi.org/10.1088/0022-3727/36/13/203
64. Chertok B., Moffat B.A., David A.E., Yu Faquan, Bergemann C., Ross B.D., Yang V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, V. 29, No. 4. pp. 487 - 496 DOI:https://doi.org/10.1016/j.biomaterials.2007.08.050
65. Jackson Tenderwealth Clement, Patani Bernard Opatimidi, Ekpa Daniel Effiong. Nanotechnology in Diagnosis: A Review. Advances in Nanoparticles, 2017, V. 6, No. 3. pp. 93-102 DOI:https://doi.org/10.4236/anp.2017.63008
66. Madkour Loutfy H. Biogenic-Biosynthesis Metallic Nanoparticles (MNPs) for Pharmacological, Biomedical and Environmental Nanobiotechnological Applications. Pharmaceutical Science & Technology Today, 2018, V. 2, No. 1. pp. 384 - 444
67. Alotaibi Khalid M., Shiels Lewis, Lacaze Laure, Peshkur Tanya A., Anderson Peter, Machala Libor, Critchley Kevin, Patwardhan Siddharth V., Gibson Lorraine T. Iron supported on bioinspired green silica for water remediation. Chemical Science, 2017, V. 8, pp. 567 - 576 DOI:https://doi.org/10.1039/c6sc02937j
68. Hailmann A. Nanostructural changes. Chapter 4 / in: Polymer films with embedded metal nanoparticles / ed. by P. Hull, R.M. Osgood Jr., J. Parisi. Berlin, Heidelberg, New-York: Springer-Verlag, 2002, pp. 77 - 127
69. Olaru Andrea, Bala Camelia, Jaffrezic-Renault Nicole, Aboul-Enein Hassan Y. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry, 2015, V. 45, No. 2. pp. 97 - 105 DOI:https://doi.org/10.1080/10408347.2014.881250
70. Kamińska Izabela. Preparation and applications of platforms based on gold nanoparticles and graphene: PD Thesis under the supervision of Prof. Dr. hab. Marcin Opałło, Institite of Physical Chemistry, PAS, Poland and under the co-supervision of Dr. Rabah Boukherroub, Interdisciplinary Research Institute, France. Warsaw, Poland: Institute of Physical Chemistry Polish Academy of Sciences, 2013, 172 p.
71. La Spada Luigi, Iovine Renato, Vegni Lucio. Nanoparticle Electromagnetic Properties for Sensing Applications. Advances in Nanoparticles, 2012, V. 1, pp. 9 - 14 http://dx.doi.org/10.4236/anp.2012.12002
72. Bajwa Sadia Zafar, Mustafa Ghulam, Samardzic Renata, Wangchareansak Thipvaree, Lieberzeit Peter A. Nanostructured materials with biomimetic recognition abilities for chemical sensing. Nanoscale Research Letters. 2012. V. 7, No. 328. 7 pages http://www.nanoscalereslett.com/content/7/1/328
73. Maksimenko V.V. Lokalizaciya sveta v neuporyadochennyh dispersnyh sredah. Dokt. Diss [Localization of light in disordered dispersed media. Doct. Diss]. Moscow: AO «NIFHI im. L.Ya. Karpova» Publ., 2015. 247 p. (in Russian).
74. Gramotnev Dmitri K., Bozhevolnyi Sergey I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, V. 4, No. 2, pp. 83 - 91 DOI:https://doi.org/10.1038/nphoton.2009.282
75. Anker Jeffrey N., Hall W. Paige, Lyandres Olga, Shah Nilam C., Zhao Jing, Van Duyne Richard P. Biosensing with plasmonic nanosensors. Nature materials, 2008, V. 7, No. 6, pp. 442 - 453 DOI:https://doi.org/10.1038/nmat2162
76. Calagua A., Alarcon H., Paraguay F., Rodriguez Juan. Synthesis and Characterization of Bimetallic Gold-Silver Core-Shell Nanoparticles: A Green Approach. Advances in Nanoparticles, 2015, V. 4, pp. 116 - 121 http://dx.doi.org/10.4236/anp.2015.44013
77. Luo Xiliang, Morrin Aoife, Killard Anthony J., Smyth Malcolm R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis, 2006, V. 18, No. 4. pp. 319 - 326 DOI:https://doi.org/10.1002/elan.200503415
78. McFarland Adam D., Van Duyne Richard P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters, 2003, V. 3, No. 8, pp. 1057-1062 DOI:https://doi.org/10.1021/nl034372s
79. Liu Y., Yin F., Long Y., Zhang Z., Yao S. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. Journal of Colloid and Interface Science, 2003, V. 258, No. 1. pp. 75 - 81 https://doi.org/10.1016/S0021-9797(02)00083-8
80. Biosensors based on nanomaterials and nanodevices / ed. by J. Li, N. Wu. Boca Raton: CRC Press Taylor & Francis Group, 2014, 489 p.
81. Khatoon Nafeesa, Mazumder Jahirul Ahmed, Sardar Meryam. Biotechnological Applications of Green Synthesized Silver Nanoparticles. Journal of Nanosciences: Current Research, 2017, V. 2, No. 1. 8 pages DOI:https://doi.org/10.4172/2572-0813.1000107
82. Koshkina O.A. «Zelenyj» fotosintez nanochastic serebra s ispol'zovaniem ekstraktov list'ev Murraya Paniculata. XV Rossijskaya ezhegodnaya konferenciya molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tekhnologiya neorganicheskih materialov». 16 - 19 oktyabrya 2018 g., Moskva, IMET RAN. Tezisy dokladov ["Green" photosynthesis of silver nanoparticles using leaf extracts of Murraya Paniculata. XV Russian annual conference of young researchers and graduate students "Physical chemistry and technology of inorganic materials." October 16-19, 2018, Moscow, IMET RAS. Abstracts of reports]. Moscow: IMET RAN Publ., 2018, pp. 434-436. (in Russian).
83. Shojaei Taha R., Salleh Mohamad A. Mohd, Sijam Kamaruzaman, Rahim Raha A., Mohsenifar Afshin, Safarnejad Reza, Tabatabaei Meisam. Fluorometric immunoassay for detecting the plant virus Citrustris teza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim. Acta, 2016, V. 183, pp. 2277 - 2287 DOIhttps://doi.org/10.1007/s00604-016-1867-7
84. Grewar Tamsyn, Gericke Mariekie. Technical Note: Synthesis and Characterization of Anisotropic Gold Nanoparticles. Advances in Nanoparticles, 2012, V. 1, pp. 15 - 20 http://dx.doi.org/10.4236/anp.2012.13003
85. Das Ratul Kumar, Gogoi Nayanmoni, Babu Punuri Jayasekhar, Sharma Pragya, Mahanta Chandan, Bora Utpal. The Synthesis of Gold Nanoparticles Using Amaranthuss pinosus Leaf Extract and Study of Their Optical Properties. Advances in Materials Physics and Chemistry, 2012, V. 2, pp. 275 - 281 http://dx.doi.org/10.4236/ampc.2012.24040
86. Elavazhagan Tamizhamudu, Arunachalam Kantha D. Memecylonedule leaf extract mediated green synthesis of silver and gold nanoparticles. International Journal of Nanomedicine. - 2011. - V. 6. - pp. 1265 - 1278 http://dx.doi.org/10.2147/IJN.S18347
87. Gancev Sh.H. Onkologiya: Uchebnik dlya studentov medicinskih vuzov [Oncology: A textbook for medical students]. Moscow: «Medicinskoe informacionnoe agentstvo» Publ., 2006. 488 p. (in Russian).
88. Shivaji Kavitha, Mani Suganya, Ponmurugan Ponnusamy, De Castro Catherine Suenne, Davies Matthew Lloyd, Balasubramaian Mythili Gnanamangai, Pitchaimuthu Sudhagar. Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Applied Nano Materials, 2018, V. 1, No. 4. pp. 1683 - 1693 DOI:https://doi.org/10.1021/acsanm.8b00147
89. Bingham Julia M., Willets Katherine A., Shah Nilam C., Andrews David Q., Van Duyne Richard P. Localized Surface Plasmon Resonance Imaging: Simultaneous Single Nanoparticle Spectroscopy and Diffusional Dynamics. The Journal of Physical Chemistry C, 2009, V. 113, No. 39. pp. 16839 - 16842 DOI:https://doi.org/10.1021/jp907377h
90. Yu Xinzhe, Zhu Wenwen, Di Yang, GuJichun, Guo Zhongyi, Li Hengchao, Fu Deliang, Jin Chen. Triple-functional albumin-based nanoparticlesfor combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphaticmetastases. International Journal of Nanomedicine, 2017, V. 12, pp. 6771 - 6785 http://dx.doi.org/10.2147/IJN.S131295
91. Song Xuejiao, Chen Qian, Liu Zhuang. Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015, V. 8, No. 2, pp. 340 - 354 DOIhttps://doi.org/10.1007/s12274-014-0620-y
92. Huang X., Tang S., Mu X., Dai Y., Chen G., Zhou Z., Ruan F., Yang Z., Zheng N. Free Standing Palladium Nanosheets with Plasmonic and Catalytic Properties. Nature Nanotechnology, 2011, V. 6, No. 1. pp. 28 - 32 DOI:https://doi.org/10.1038/nnano.2010.235
93. Casais-Molina M.L., Cab C., Canto G., Medina J., Tapia A. Carbon Nanomaterials for Breast Cancer Treatment. Journal of Nanomaterials, 2018, Article ID 2058613, 9 pages https://doi.org/10.1155/2018/2058613
94. Wang Sheng, Lin Jing, Huang Peng. Advances on the Use of Biodegradable Proteins/Peptides in Photothermal Theranostics. Hindawi Publishing Corporation. Journal of Nanomaterials, 2016, Article ID 5810952, 10 pages http://dx.doi.org/10.1155/2016/5810952
95. Singh Jagpreet, Singh Tejinder, Rawat Mohit. Green Synthesis of Silver Nanoparticles via Various Plant Extracts for Anti-Cancer Applications. Global Journal Nanomedicine, 2017, V. 2, No. 3, 555590, 4 pages
96. Chahardoli Azam, Karimi Naser, Fattahi Ali. Biosynthesis, Characterization, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract. Iranian Journal of Pharmaceutical Research, 2017, V. 16, No. 3. pp. 1167 - 1175.
97. Premkumar T., Lee Y., Geckeler K.E. Macrocycles as a tool: A facile and one pot synthesis of silver nanoparticles using cucurbituril designed for cancer therapeutics. Chemistry - A European Journal, 2010, V. 16, No. 38. pp. 11563 - 11566. doi:https://doi.org/10.1002/chem.201001325
98. Reshmi S.K., Sathya E., Suganya Devi P. Isolation of piperidine from Piper nigrum and its antiproliferative activity. Journal of Pharmacy Research, 2010, V.3, No. 10. 7 pages
99. Jacob S.J.P., Finub J.S., Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and surfaces B: Biointerfaces, 2011, V. 91, No. 1. pp. 212 - 214 DOI:https://doi.org/10.1016/j.colsurfb.2011.11.001
100. Park Ji Su, Ahn Eun-Young, Park Youmie. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts. International Journal of Nanomedicine, 2017, V. 12, pp. 6895 - 6908 http://dx.doi.org/10.2147/IJN.S140190
101. Dvoreckij D.S., Dvoreckij S.I., Temnov M.S., Peshkova E.V., Akulinin E.I. Tekhnologiya polucheniya lipidov iz mikrovodoroslej [The technology of lipids from microalgae]. Tambov: FGBOU VPO «TGTU» Publ., 2015. 103 p. (in Russian).
102. Ebrahiminezhad Alireza, Bagheri Mahboobeh, Taghizadeh Seyedeh-Masoumeh, Berenjian Aydin, Ghasemi Younes. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, V. 7, 015018. 8 pages DOIhttps://doi.org/10.1088/2043-6262/7/1/015018
103. Li Yingjia, Wen Ge, Wang Dongxiao, Zhang Xia, Lu Yaoyong, Wang Jianguo, Zhong Lijuan, Cai Hongbing, Zhang Xingmei, Wang Ying. A Complementary Strategy for Enhancement of Nanoparticle Intracellular Uptake. Pharmaceutical Researches. - 2014. - V. 31. - pp. 2054 - 2064 DOIhttps://doi.org/10.1007/s11095-014-1307-5
104. Mehdi Razavi, Erfan Salahinejad, Mina Fahmy, Mostafa Yazdimamaghani, Daryoosh Vashaee, Lobat Tayebi. Green Chemical and Biological Synthesis of Nanoparticles and Their Biomedical Applications. Chapter 7 / in: Green Processes for Nanotechnology / V.A. Basiuk, E.V. Basiuk (eds.). Switzerland: Springer International Publishing, 2015, pp. 207 - 235 DOI:https://doi.org/10.1007/978-3-319-15461-9_7
105. Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, et al. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model. PLoS ONE, 2012, V. 7, No. 3, e32568. 15 pages https://doi.org/10.1371/journal.pone.0032568
106. Ravi Geetha, Thirunavukkarasu Ashokkumar, Selvaraj Tamilselvan, Kasivelu Govindaraju, Mohamed Sadiq, Ganesan Singaravelu. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nano, 2013, V. 4, pp. 91 - 98 DOI:https://doi.org/10.1007/s12645-013-0040-9
107. Kattesh V. Katti. Renaissance of nuclear medicine through green nanotechnology: functionalized radioactive gold nanoparticles in cancer therapy - my journey from chemistry to saving human lives. Journal Radioanalytical Nuclear Chemistry, 2016, V. 309, pp. 5 - 14 DOI:https://doi.org/10.1007/s10967-016-4888-0
108. Paciotti Giulio F., Myer Lonnie, Weinreich David, Goia Dan, Pavel Nicolae, McLaughlin Richard E., Tamarkin Lawrence. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 2004, V. 11, No. 3. pp. 169 - 183 DOI:https://doi.org/10.1080/10717540490433895
109. Namdeo Mini, Saxena Sutanjay, Tankhiwale Rasika, Bajpai M., Mohan Y.M., Bajpai S.K. Magnetic nanoparticles for drug delivery applications. Journal of Nanoscience and Nanotechnology, V. 8, No. 7. pp. 3247 - 3271 DOI:https://doi.org/10.1166/jnn.2008.399
110. Hassan Korbekandi, Siavash Iravani. Silver Nanoparticles. Chaper 1 / in: The Delivery of Nanoparticles / Editors: Abbass A. Hashim. Rijeka, Croatia: InTech, 2012, pp. 3 - 36 DOI:https://doi.org/10.5772/34157
111. Shittu K.O., Bankole M.T., Abdulkareem A.S., Abubakre O.K., Ubaka A.U. Application of gold nanoparticles for improved drug efficiency. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, V. 8, 035014. 8 pp. https://doi.org/10.1088/2043-6254/aa7716
112. Muthupandi Kasithevar, Muthupandian Saravanan, Periyakaruppan Prakash, Hema Kumar, Muhammad Ovais, Hamed Barabadi, Zabta Khan Shinwari. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. Journal of Interdisciplinary Nanomedicine, 2017, V. 2, No. 2. pp. 131 - 141 DOI:https://doi.org/10.1002/jin2.26
113. Aruna Jyothi Kora, Sashidhar Rao Beedu, Arunachalam Jayaraman. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters, 2012, V. 2, No. 17. 10 pages http://www.orgmedchemlett.com/content/2/1/17
114. Asha Rani P.V., Low Kah Mun G., Hande M.P.,Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, V. 24, V. 3, No. 2. pp. 279 - 290 DOI:https://doi.org/10.1021/nn800596w
115. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, V. 275, No. 1. pp. 177 - 182 DOI:https://doi.org/10.1016/j.jcis.2004.02.012
116. Amro Nabil A., Kotra Lakshmi P., Wadu-Mesthrige Kapila, Bulychev Alexy, Mobashery Shahriar, Liu Gang-yu. High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Structural Basis for Permeability. Langmuir, 2000, V. 16, No. 6. pp. 2789 - 2796.
117. Banerjee Aparna, Halder Urmi, Bandopadhyay Rajib. Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art. Journal of Cluster Science, 2017, V. 28, pp. 1803 - 1813 DOI:https://doi.org/10.1007/s10876-017-1219-8
118. Keat Cheah Liang, Aziz Azila, Eid Ahmad M., Elmarzugi Nagib A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2015, V. 2, No. 47. 11 pages DOI:https://doi.org/10.1186/s40643-015-0076-2
119. Tippayawat Patcharaporn, Phromviyo Nutthakritta, Boueroy Parichart, Chompoosor Apiwat. Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer Journal, 2016, V. 15, No. 4, e2589. 15 pages. DOI:https://doi.org/10.7717/peerj.2589
120. Erjaee Hoda, Rajaian Hamid, Nazifi Saeed. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobileextract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, V. 8, 025004. 9 pages https://doi.org/10.1088/2043-6254/aa690b
121. Mane Gavade S.J., Nikam G.H., Dhabbe R.S., Sabale S.R., Tamhankar B.V., Mulik G.N. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, V. 6, 045015. 6 pages DOI:https://doi.org/10.1088/2043-6262/6/4/045015
122. Kokila T., Ramesh P.S., Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Applied Nanoscience, 2015, V. 5, pp. 911 - 920 DOI:https://doi.org/10.1007/s13204-015-0401-2
123. Bharathi Devaraj, Diviya Josebin M., Vasantharaj Seerangaraj, Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. Journal of Nanostructure in Chemistry, 2018, V. 8, pp. 83 - 92 https://doi.org/10.1007/s40097-018-0256-7
124. Awasthi Garima, Kumar Amit, Awasthi Kumud Kant, Singh Amit Pal, Srivastva Sudhakar, Vajpayee Poornima, Mishra Kumkum, Tripathi Rudra Deo. Green Synthesis of Nanoparticles: An Emerging Phytotechnology. Chapter 15 / in: Green Technologies and Environmental Sustainability / R. Singh, S. Kumar (eds.). Springer International Publishing AG, 2017. pp. 339 - 363 DOI:https://doi.org/10.1007/978-3-319-50654-8_15
125. Saperkin N.V., Alebashina L.A., Kvashnina D.V. Ustojchivost' bakterij k dezinfektatam: ocenka dokazatel'noj bazy. Sovremennye problemy nauki i obrazovaniya [Resistance of bacteria to disinfectants: assessment of the evidence base. Modern problems of science and education]. 2016, I. 5. Available at: http://www.science-education.ru/ru/article/view?id=25429 (accessed 28 June 2018). (in Russian).
126. Haddadin A.S., Fappiano S.A., Lipsett P.A. Methicillin resistant Staphylococcus aureus (MRSA) in the intensive care unit. Postgraduate Medical Journal, 2002, V. 78, No. 921. pp. 385 - 392 DOI:https://doi.org/10.1136/pmj.78.921.385
127. Gostev V.V., Kalinogorskaya O.S., Kruglov A.N., Sidorenko S.V. Antibiotikorezistentnost' koagulyazootricatel'nyh stafilokokkov, vydelennyh v stacionarah Sankt-Peterburga i Moskvy. Antibiotiki i himioterapiya [Antibiotic resistance of coagulase-negative staphylococci isolated in hospitals in St. Petersburg and Moscow. Antibiotics and chemotherapy]. 2015, V. 60, I. 9-10, pp. 23-28. (in Russian).
128. Bukina Yu.A., Sergeeva E.A. Poluchenie antibakterial'nyh tekstil'nyh materialov na osnove nanochastic serebra posredstvom modifikacii poverhnosti tekstilya neravnovesnoj nizkotemperaturnoj plazmoj [btaining antibacterial textile materials based on silver nanoparticles by modifying the textile surface with nonequilibrium low-temperature plasma]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University]. 2012, V. 15, pp. 125-128. (in Russian).
129. Hebeish A., El-Naggar M.E., Fouda Moustafa M.G., Ramadan M.A., El-Rafie M.H. Highly effective antibacterial textiles containing green synthesized silver. Carbohydrate Polymers, 2011, V. 86, No. 2. pp. 936 - 940 https://doi.org/10.1016/j.carbpol.2011.05.048
130. Emam Hossam E., El-Rafie M.H., Ahmed Hanan B., Zahran M.K. Room Temperature Synthesis of Metallic Nanosilver Using Acacia to Impart Durable Biocidal Effect on Cotton Fabrics. Fibers and Polymers, 2015, V. 16, No. 8. pp. 1676 - 1687 DOI:https://doi.org/10.1007/s12221-015-5197-x
131. Sankaranarayanan A., Munivel Govindarasu, Karunakaran Gopalu, Kadaikunnan Shine, Alharbi Naiyf S., Khaled Jamal M., Kuznetsov Denis. Green Synthesis of Silver Nanoparticles Using Arachis hypogaea (Ground Nut) Root Extract for Antibacterial and Clinical Applications. Journal of Cluster Science, 2017, V. 28, pp. 995 - 1008 DOI:https://doi.org/10.1007/s10876-016-1084-x
132. Santhoshkumar Thirunavukkarasu, Rahuman Abdul, Jayaseelan Chidambaram, Rajakumar Govindasamy, Marimuthu Sampath, Kirthi Arivarasan Vishnu, Velayutham Kanayairam, Thomas John, Venkatesan Jayachandran, Kim Se-Kwon. Green synthesis of titanium dioxide nanoparticles using Psidium guajavaextract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 2014, pp. 968 - 976 DOI:https://doi.org/10.1016/S1995-7645(14)60171-1
133. Yousaf Zubaida, Saleh Nadia. Advanced Concept of Green Synthesis of Metallic Nanoparticles by Reducing Phytochemicals. Chapter 2 / Nanobotany / S. Javad, A. Butt (eds.). Springer International Publishing AG, part of Springer Nature, 2018, pp. 17 - 36 https://doi.org/10.1007/978-3-319-77119-9_2
134. Smitha S.L., Gopchandran K.G., Nair Nimisha R., Nampoothiri K. Madhavan, Ravindran T.R. SERS and Antibacterial Active Green Synthesized Gold Nanoparticles. Plasmonics, 2012, V. 7, pp. 515 - 524 DOI:https://doi.org/10.1007/s11468-012-9337-5
135. Adavallan K., Krishnakumar N. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. Advances in Natural Sciences: Nanoscience and Nanotechnology. - 2014. - V. 5. - 025018. - 9 pages. DOIhttps://doi.org/10.1088/2043-6262/5/2/025018
136. Soni Namita, Prakash Soam. Possible Mosquito Control by Silver Nanoparticles Synthesized by Soil Fungus (Aspergillus niger2587). Advances in Nanoparticles, 2013, V. 2, pp. 125 - 132 http://dx.doi.org/10.4236/anp.2013.22021
137. Rónavári Andrea, Kovács Dávid, Igaz Nóra, Vágvölgyi Csaba, Boros Imre Miklós, Kónya Zoltán, Pfeiffer Ilona, Kiricsi Mónika. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. International Journal of Nanomedicine, 2017, V. 12, pp. 871 - 883 http://dx.doi.org/10.2147/IJN.S122842
138. Kashkin P.N., Lisin V.V. Prakticheskoe rukovodstvo po medicinskoj mikologii [A practical guide to medical mycology]. Moscow: Medicina Publ., 1983. 192 p. (in Russian).
139. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, V. 3, No. 1. pp. 95 - 101 DOI:https://doi.org/10.1016/j.nano.2006.12.001
140. Bazeera A. Zeenath, Selvaraj S., Mohamed A. Syed, Amrina M. Irfana. Biosynthesis of Silver Nanoparticles Using Indian Nettle Leaves. International Journal of Trend in Research and Development, 2017, pp. 27 - 30.
141. Nikitina E. Poluchenie nanochastic serebra metodami «zelenoj himii» i issledovanie ih protivogribkovoj aktivnosti i antibakterial'nyh svojstv [Obtaining silver nanoparticles by the methods of "green chemistry" and the study of their antifungal activity and antibacterial properties]. Moscow: Licej 1586 Publ., 2011. 15 p. (in Russian).
142. Khadri Habeeb, Alzohairy Mohammad, Janardhan Avilala, Kumar Arthala Praveen, Narasimha Golla. Green Synthesis of Silver Nanoparticles with High Fungicidal Activity from Olive Seed Extract. Advances in Nanoparticles, 2013, V. 2, pp. 241 - 246 http://dx.doi.org/10.4236/anp.2013.23034
143. Hazarika Shabiha Nudrat, Gupta Kuldeep, Shamin Khan Naseem Ahmed Mohammed, Bhardwaj Pushpender, Boruah Ratan, Yadav Kamlesh K., Naglot Ashok, Deb P., Mandal M., Doley Robin, Veer Vijay, Baruah Indra, Namsa Nima D. One-pot facile green synthesis of biocidal silver nanoparticles. Material Research Express, 2016, V. 3, 075401. 15 pages DOI:https://doi.org/10.1088/2053-1591/3/7/075401
144. Niknejad F., Nabili M., Daie Ghazvini R., Moazeni M. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Current Medical Mycology, 2015, V. 1, No. 3. pp. 17 - 24 DOI:https://doi.org/10.18869/acadpub.cmm.1.3.17
145. Khatami Mehrdad, Mortazavi Seyed Mojtaba, Kishani-Farahani Zeinab, Amini Abbas, Amini Elham, Heli Hossein. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iranian Journal Biotechnology, 2017, V. 15, No. 2, e1436. 7 pages. DOIhttps://doi.org/10.15171/ijb.1436
146. Khatoon N., Mishra A., Alam H., Manzoor N., Sardar M. Biosynthesis, characterization, and antifungal activity of the silver nanoparticles against pathogenic Candida species. BioNanoScience, 2015, V. 5, No. 2. pp. 65 - 74 DOI:https://doi.org/10.1007/s12668-015-0163-z
147. Sun R.W., Chen R., Chung N.P., Ho C.M., Lin C.L., Che C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical communications (Cambridge, England), 2005, V. 40, pp. 5059 - 5061 DOI:https://doi.org/10.1039/b510984a
148. Elechiguerra J.L., Burt J.L., Morones J.R., Camacho-Bragado A., Gao X., Lara H.H., Yacaman M.J. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 2005, V. 3, No. 6, 10 pages doihttps://doi.org/10.1186/1477-3155-3-6
149. Vinayagam Ramesh, Varadavenkatesan Thivaharan, Selvaraj Raja. Evaluation of the Anticoagulant and Catalytic Activities of the Bridelia retusa Fruit Extract-Functionalized Silver Nanoparticles. Journal of Cluster Science, 2017, V. 28, pp. 2919 - 2932 DOIhttps://doi.org/10.1007/s10876-017-1270-5
150. Kunjiappan Selvaraj, Chowdhury Ranjana, Bhattacharjee Chiranjib. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract. Frontiers of Materials Science, 2014, V. 8, No. 2. pp. 123 - 135 DOI:https://doi.org/10.1007/s11706-014-0246-8
151. Wu Hao, Wu Haohan, He Yanni, Gan Zhen, Xu Zhili, Zhou Meijun, Liu Sai, Liu Hongmei. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes. International Journal of Nanomedicine, 2018, V. 13, pp. 1841 - 1850 http://dx.doi.org/10.2147/IJN.S155475
152. Kaba S.I., Ignashkova T.I., Rybakov A.S., Meshcherskij M.E., Sokolovskaya A.A., Yurkiv V.A., Moskovcev A.A., Egorova E.M., Kubatiev A.A. Citotoksicheskoe i stress-induciruyushchee dejstvie nanochastic serebra na kletki linij HeLa i U937. Patogenez [Cytotoxic and stress-inducing effects of silver nanoparticles on HeLa and U937 cell lines. Pathogenesis]. 2013, V. 11, I. 2, pp. 46-54. (in Russian).
153. Smith Philip J., Giroud Maude, Wiggins Helen L., Gower Florence, Thorley Jennifer A., Stolpe Bjorn, Mazzolini Julie, Dyson Rosemary J., Rappoport Joshua Z. Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. International Journal of Nanomedicine, 2012, V. 7, pp. 2045 - 2055 http://dx.doi.org/10.2147/IJN.S29334
154. Zefirov A.L., Petrov A.M. Endocitoz v nervnoj sisteme. Priroda [Endocytosis in the nervous system. Nature]. 2009, I. 9, pp. 12-20. (in Russian).
155. Popova N.V., Deev I.E., Petrenko A.G. Klatrin-zavisimyj endocitoz i belki-adaptery. Acta naturae [Clathrin-dependent endocytosis and adapter proteins. Acta naturae]. 2013, V. 5, I. 3 (18), pp. 66-77. (in Russian).
156. Dykman L.A., Hlebcov N.G. Zolotye nanochasticy v biologii i medicine: dostizheniya poslednih let i perspektivy. Acta naturae [Gold nanoparticles in biology and medicine: recent achievements and prospects. Acta naturae]. 2011, V. 3, I. 2 (9), pp. 36-58. (in Russian).
157. Abaeva L.F., Shumskij V.I., Petrickaya E.N., Rogatkin D.A., Lyubchenko P.N. Nanochasticy i nanotekhnologii v medicine segodnya i zavtra. Al'manah klinicheskoj mediciny [Nanoparticles and nanotechnology in medicine today and tomorrow. Almanac of clinical medicine]. 2010, I. 22, pp. 10-16. (in Russian).
158. Rodero M.S., Romero J.M.F., Hens A.G. Photometric Determination of Thioglycolic Acid in Cosmetics by Using a Stopped-Flow Reverse Flow-Injection System and the Formation of Gold Nanoparticles. Microchemical Journal, 2011, V. 97, No. 2. pp. 243 - 248 DOI:https://doi.org/10.1016/j.microc.2010.09.011
159. Fazilova S.A., Yugaj S.M., Rashidova S.Sh. Strukturnye issledovaniya polisaharidov i nanokompozicij na ih osnove. Himiya rastitel'nogo syr'ya [Structural studies of polysaccharides and nanocomposites based on them. Chemistry of plant materials]. 2010, I. 1, pp. 13-19. (in Russian).
160. Oladele Isiaka Oluwole, Olajide Jimmy Lolu, Daramola Oluyemi Ojo, Siaw Kofi Bismarck. Re-Evaluation of Bovine Fiber Biomass as Exploitable Keratinous Bio-Resource for Biomedical and Industrial Applications. Journal of Minerals and Materials Characterization and Engineering, 2017, V. 5, pp. 1 - 17 http://dx.doi.org/10.4236/jmmce.2017.51001
161. Okoronkwo Elvis A., Imoisili Patrick Ehi, Olubayode Smart A., Olusunle Samuel O.O. Development of Silica Nanoparticle from Corn Cob Ash. Advances in Nanoparticles, 2016, V. 5, pp. 135 - 139 http://dx.doi.org/10.4236/anp.2016.52015
162. Ekwedigwe M.C., Nnuka E.E., Atuanya C.U. Experimental Evaluation of the Mechanical Properties of Recycled Low Density Polyethylene/Bean Pod Ash Particulate Bio-Composites. Journal of Minerals and Materials Characterization and Engineering, 2015, V. 3, pp. 362 - 372 http://dx.doi.org/10.4236/jmmce.2015.35039
163. Rashkovskij A.Yu., Politova E.D., Merkushkin A.O., Arsent'ev M.A., Maslenkova E.V., Smolyanskij A.S. Dvuhfaznaya struktura ftorirovannogo poroshkoobraznogo dioksida kremniya, poluchennogo v rezul'tate glubokoj pererabotki othodov risa [Two-phase structure of fluorinated powdered silicon dioxide obtained as a result of deep processing of rice waste]. Bezopasnost' v tekhnosfere [Safety in the technosphere]. 2018, V. 7, I. 1, pp. 38-44. DOI:https://doi.org/10.12737/article_5b5f05c20b2305.16028454. (in Russian).
164. Deshpande Sudeep, Rangaswamy T. A Comparative Study on Dry Sliding Wear Characteristics of Al2O3 and Bone Powder Filled Hybrid Composites. Journal of Minerals and Materials Characterization and Engineering, 2016, V. 4. pp. 164 - 180 http://dx.doi.org/10.4236/jmmce.2016.42016
165. Liu Zhichang, Frasconi Marco, Lei Juying, Brown Zachary J., Zhu Zhixue, Cao Dennis, Iehl Julien, Liu Guoliang, Fahrenbach Albert C., Botros Youssry Y., Farha Omar K., Hupp Joseph T., Mirkin Chad A., Stoddart J. Fraser. Selective isolation of gold facilitated by second-sphere coordination with a-cyclodextrin. Nature Communications, 2013, V. 4, No. 1855, 9 pages DOI:https://doi.org/10.1038/ncomms2891