OBSERVATIONS OF SPACE DEBRIS IN THE VICINITY OF ORBITS OF GLOBAL NAVIGATION SATELLITE SYSTEMS
Abstract and keywords
Abstract (English):
The problem of the amount and characteristics of space debris in the vicinity of orbits of Global Navigation Satellite Systems (GNSS) is of significant interest from the viewpoint of safe operation of these systems. Attempts have repeatedly been made to search for space debris fragments in a given region of orbits, but have not led to cataloging such objects. Only in 2018, eight space objects were discovered which were not related to active or inactive spacecraft or their launch elements. Photometrical and trajectory observations with optical telescopes are practically the only source of information about characteristics of such objects. The paper presents a summary of the design features and technical characteristics of the new AZT-33VM telescope. We describe a technique for determining orbital parameters of non-cataloged space debris from optical measurements. We report the results of photometric observations of a space object, detected in the vicinity of orbits of the Global Navigation Satellite System GLONASS.

Keywords:
space debris, Global Navigation Satellite System, wide-field telescope
Text
Publication text (PDF): Read Download
References

1. Abalakin V.K., Aksenov E.P., Grebenikov E.A., Demin V.G., Ryabov Yu.A. Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike. Izd. 2 [Reference Guide to Celestial Mechanics and Astrodynamics. 2nd ed.]. Moscow, Nauka Publ., 1976. 273 p. (In Russian).

2. Ackermann M.R., Kiziah R.R., Beason J.D., Zimmer P.C., McGraw J.T. Exploration of wide-field optical system technologies for sky survey and space surveillance. Proc. 30th Space Symposium. Colorado Springs, Colorado, USA. 2014, pp. 1-28.

3. Bordovitsyna T.V., Avdyushev V.A. Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody. Izd. 2. [The Theory of Motion of Artificial Earth Satellites. Analytical and Numerical Methods. 2nd ed.]. Tomsk, TGU Publ. 2016, 254 p. (In Russian).

4. Chuprakov S.A., Eselevich M.V., Korobtsev I.V. Stray light protection system of the AZT-33VM telescope focal plane, Sayan Astronomical Complex. J. Astronomical Telescopes, Instruments, and Systems. 2018, vol. 4, no. 2, p. 024002. DOI:https://doi.org/10.1117/1.JATIS.4.2.024002.

5. Denisenko S.A., Kamus S.F., Pimenov Yu.D., Tergoev V.I., Papushev P.G. Fast wide-angle telescope AZT-33VM. Opticheskii zhurnal. [J. Optical Technology]. 2009, vol. 79, no. 9, pp. 48-51 (in Russian).

6. Dick J., Herridge P., Tremayne-Smith R., Davey J., Crowther R. Surveying for debris in MEO with optical sensors. Proc. 5th European Conference on Space Debris, ESA. 2009. vol. 5, iss. 1.

7. Eselevich M.V., Goryashin V.E., Korobtsev I.V., Tsukker T.G. Observations of unknown space debris objects at AZT-33VM telescope. Ekologicheskiy vestnik nauchnykh tsentrov ChES [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation]. 2017, vol. 4, iss. 3, pp. 52-60. (In Russian). DOI: 10.31429/ vestnik-14-4-3-52-60.

8. ESA’s Annual Space Environment Report. 2019. https://www.sdo.esoc.esa.int/environment_report/Space_ Environment_Report_latest.pdf (accessed 20 August 2019).

9. Everhart E. Implicit single-sequence methods for integrating orbits. Celestial Mechanics. 1974, vol. 10, iss. 1, pp. 35-55. DOI:https://doi.org/10.1007/BF01261877.

10. Hoots F.R., Roehrich R.L. Models for propagation of NORAD element sets. Spacetrack Report No. 3. Aerospace Defense Center, Peterson AFB, CO. 1988, 90 p.

11. Howell S.B. Handbook of CCD Astronomy. Second ed. Cambridge. UK: Cambridge University Press, 2006. 223 p.

12. Kamus S.F., Tergoev V.I., Papushev P.G., Drujinin S.A., Karavaev Y.S., Palachev Y.M., Denisenko S.A., Lipin N.A. Wide range astronomical telescope. Opticheskiy zhurnal [J. Optical Technology]. 2002, vol. 69, no. 9, pp. 84-87. (In Russian).

13. Kelecy T., Jah M., Sydney P., Kervin P. Analysis of Pan-STARRS photometric and astrometric data for data association and physical consistency assessment. Proc. 6th European Conference on Space Debris. Darmstadt, Germany, 22-25 April 2013 (ESA SP-723), id.28.

14. Lafler J., Kinman T.D. An RR Lyrae star survey with the Lick 20-inch astrograph II. The calculation of RR Lyrae periods by electronic computer. Astrophys. J. Suppl. 1965, vol. 11, pp. 216. DOI:https://doi.org/10.1086/190116.

15. Mulrooney M., Matney M., Hejduk M., Barker E. An investigation of global albedo values. Proc. Advanced Maui Optical and Space Surveillance Technologies Conference. 2008, p. E65.

16. McCue G.A., Williams J.G., Morford J.M. Optical characteristics of artificial satellite. Planetary and Space Sci. 1971, vol. 19, no. 8, pp. 851-868. DOI:https://doi.org/10.1016/0032-0633(71)90137-1.

17. Newsletters of PJSC “IAC Vympel”. 2019. http://spacedata. vimpel.ru/ru (accessed 10 January 2019).

18. Schildknecht T. Optical surveys for space debris. Astron. Astrophys. Rev. 2007, vol. 14, pp. 41-111. DOI: 10.1007/ s00159-006-0003-9.

19. Schildknecht T., Ploner M., Hugentobler U. The search for debris in GEO. Adv. Space Res. 2001, vol. 28, no. 9, pp. 1291-1299. DOI:https://doi.org/10.1016/S0273-1177(01)00399-4.

20. Schildknecht T., Vananti A., Herzog J., Hinze A., Krag H., Flohrer T. Optical surveys for space debris in MEO. Proc. 9th US-Russian Space Surveillance Workshop. 2012. Listvyanka (Irkutsk), Russia.

21. Seitzer P., Smith R., Africano J., Jorgensen K., Stansbery E., Monet D. MODEST observations of space debris at geosynchronous orbit. Adv. Space Res. 2004, vol. 34, iss. 5, pp. 1139-1142. DOI:https://doi.org/10.1016/j.asr.2003.12.009.

22. Silha J., Schildknecht T., Hinze A., Flohrer T., Vananti A. An optical survey for space debris on highly eccentric and inclined MEO orbits. Adv. Space Res. 2017, vol. 59, pp. 181-192. DOI:https://doi.org/10.1016/j.asr.2016.08.027.

23. URL: http://ckp-rf.ru/ckp/3056/ (accessed 12 March 2019).

Login or Create
* Forgot password?