National Research Tomsk Polytechnic University (Deputy Director)
Tomsk, Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Tomsk, Russian Federation
Tomsk, Russian Federation
Tomsk, Russian Federation
Tomsk, Russian Federation
GRNTI 76.03 Медико-биологические дисциплины
GRNTI 76.33 Гигиена и эпидемиология
OKSO 14.04.02 Ядерные физика и технологии
OKSO 31.06.2001 Клиническая медицина
OKSO 31.08.08 Радиология
OKSO 32.08.12 Эпидемиология
BBK 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
BBK 534 Общая диагностика
TBK 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
TBK 5712 Медицинская биология. Гистология
TBK 5734 Медицинская радиология и рентгенология
TBK 6212 Радиоактивные элементы и изотопы. Радиохимия
Despite the high efficiency of the use of 18F-FDG PET in the diagnosis, staging, monitoring and prognosis of treatment of lymphomas, the use of this method in our country is limited due to the high cost and the insufficient number of PET-centers. In this regard, it seems relevant to conduct research aimed at using known and developing original radiopharmaceuticals for lymphoma imaging with single-photon emission computed tomography (SPECT). In this review, the main radiopharmaceuticals (67Ga-citrate, 201Tl, 199Tl, 99mTc-methoxy-isobutyl-isonitrile, 99mTc-tetrofosmin, 111In-octreotide), which are possible for SPECT lymphoma imaging are shown. Also mechanisms of their action, the possibility of their using for various morphological variants of lymphomas and localizations of the lesion are described. In addition, the results of the use of an innovative radiopharmaceutical based on glucose - 99mTc-1-thio-D-glucose, which is promising for diagnostics, staging and monitoring of lymphoproliferative diseases, are presented.
lymphoproliferative disease, Hodgkin's lymphoma, non-Hodgkin's lymphomas, single-photon emission computed tomography, 67Ga-citrate, thallium-201, thallium-199, 99mTc-methoxy-isobutyl-isonitrile, 99mTc-tetrofosmin, 111In-octreotide, 99mTc-1-Thio -D-glucose
1. Aslanidi IP, Mukhortova OV, Shurupova IV, Derevyanko EP, Katunina TA, Pivnik AV, Stroyakovskii DL. Positron emission tomography: refining the stage of the disease in malignant lymphomas. Clinical Oncohematology. Fundamental Research and Clinical Practice. 2010;3(2):119-29. (Russian).
2. Chernov VI, Dudnikova EA, Goldberg VE, et al. Positron Emission Tomography in the Diagnosis and Monitoring of Lymphomas. Medical Radiology and Radiation Safety. 2018;63(6):42-50. (Russian).
3. Front D, Israel O. Present state and future role of gallium-67 scintigraphy in lymphoma. J Nucl Med. 1996;37(3):530-2.
4. Novikov SN, Girshovich MM. Diagnosis and staging of Hodgkin lymphoma. Problems of Tuberculosis and Lung Diseases. 2007;8(2):65-72.
5. Kostakoglu L, Goldsmith S.J. Fluorine-18 fluorodeoxyglucose positron emission tomography in the staging and followup of lymphoma: is it time to shift gears? Eur J Nucl Med. 2000;27(10):1564-78.
6. Palumbo B, Sivolella S, Palumbo I, et al. 67Ga-SPECT/CT with a hybrid system in the clinical management of lymphoma. Eur J Nucl Med and Molec Imaging. 2005;32(9):1011-7.
7. Lin J, Leung WT, Ho SKW, et al. Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med. 1995;22(6):553-5.
8. Haas RLM, Vald´es-Olmos RA, Hoefnagel CA, et al. Thallium-201-chloride scintigraphy in staging and monitoring radiotherapy response in follicular lymphoma patients. Radiother and Oncol. 2003;69(3):323-8.
9. Kostakoglu L, Goldsmith SJ. Lymphoma imaging: nuclear medicine. Cancer Treatment and Research. 2006;131:363-412.
10. Arbab AS, Koizumi K, Hiraike S, et al. Will thallium-201 replace gallium-67 in salivary gland scintigraphy? J Nucl Med. 1996;37(11):1819-23.
11. Lorberboym M, Estok L, Machac J, et al. Rapid differential diagnosis of cerebral toxoplasmosis and primary central nervous system lymphoma by thallium-201 SPECT. J Nucl Med. 1996;37(7):1150-4.
12. Lorberboym M, Wallach F, Estok L, et al. Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary lymphoma and nonmalignant lesions in AIDS patients. J Nucl Med. 1998;39(8):1366-9.
13. Skiest DJ, Erdman W, Chang WE, et al. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infection. 2000;40(3):274-81.
14. Lishmanov YuB, Chernov VI, Krivonogov NG, Glukhov GG, Maslova LV. Perfusion scintigraphy of myocardium with 199Tl-chloride in the experiment. Med Radiology and Radiation Safety. 1988;33(3):13-6. (Russian).
15. Lishmanov YuB, Chernov VI, Triss SV, Mazurin IYu. Scintigraphy of the myocardium with thallium-199. Med Radiology. 1990(4):35-8. (Russian).
16. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Experience of developing innovative radiopharmaceuticals in the Tomsk Research Institute of Oncology. Siberian Oncol J. 2015 (Application 2):45-7. (Russian).
17. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Innovative radiopharmaceuticals for oncology: development of Tomsk National Research Medical Center. Malignant Tumors. 2017;7(S3):52-6. (Russian).
18. Lishmanov YuB, Chernov VI, Krivonogov NG, Efimova IYu, Vesnina ZhV, Zavadovsky KV. Radionuclide research methods in diagnosis of cardiovascular diseases. Siberian Med J (Tomsk). 2010;25(4-1):8-13. (Russian).
19. Karpov RS, Pavlyukova EN, Vrublevsky AV, Chernov VI, Usov VYu. Modern methods of diagnosing coronary atherosclerosis. Siberian Sci Med J. 2006;26(2):105-117. (Russian).
20. Chernov VI, Garganeyeva AA, Vesnina ZhV, Lishmanov YuB. Perfusion scintigraphy of myocardium in evaluation of the results of course treatment with trimetazidine in patients with ischemic heart disease. Cardiology. 2001;41(8):14-6. (Russian).
21. Titskaya AA, Chernov VI, Slonimskaya EM, Sinilkin IG. Imaging with 199Tl in the diagnosis of breast cancer. Siberian Oncol J. 2008(6):5-10. (Russian).
22. Zelchan RV, Chernov VI, Medvedeva AA, Sinilkin IG, Bragina OD, Chizhevskaya SYu, Choinzonov EL. Use of single-photon emission computer tomography with 99mTc-MIBI and 199Tl-chloride in the diagnosis and evaluation of the efficacy of chemotherapy for primary and recurrent tumors of the larynx and larynx. Eurasian Cancer J. 2016;1(8):9-16. (Russian).
23. Kostakoglu L, Elahi N, K¨ıratl¨ı P, et al. Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med. 1997;38(7):1003-8.
24. Rodriguez C, Commes T, Robert J, Rossi J-F. Expression of P-glycoprotein and anionic glutathione S-transferase genes in non-Hodgkin’s lymphoma. Leukemia Res. 1993;17(2):149-56.
25. Liu Q, Ohshima K, Kikuchi M. High expression ofMDR-1 gene and P-glycoprotein in initial and re-biopsy specimens of relapsed B-cell lymphoma. Histopathology. 2001;38(3):209-16.
26. Piwnica-Worms D, Chiu M.L, Budding M, et al. Functional imaging of multidrugresistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53(5):977-84.
27. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med. 1994;35(3):510-515.
28. Song HC, Lee JJ, Bom HS, et al. Double-phase Tc-99m MIBI scintigraphy as a therapeutic predictor in patients with non-Hodgkin’s lymphoma. Clin Nucl Med. 2003;28(6):457-62.
29. Kao CH, Tsai SC, Wang JJ, et al. Evaluation of chemotherapy response using technetium-99m-sestamibi scintigraphy in untreated adult malignant lymphomas and comparison with other prognosis. BioMed Research International 11 factors: a preliminary report. Int J Cancer. 2001;95(4):228-31.
30. Liang JA, Shiau YC, Yang SN, et al. Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression. Oncol Reports. 2002;9(2):307-12.
31. Lazarowski A, Dupont J, Fernández J, et al. 99mTechnetium-Sestamibi uptake inmalignant lymphomas. Correlation with chemotherapy response. Lymphatic Res Biol. 2006;4(1):23-8.
32. Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34(2):222-7.
33. Ding HJ, Shiau YC, Tsai SC, et al. Uptake of 99mTc tetrofosmin in lymphoma cell lines: a comparative study with 99mTc sestamibi. Appl Radiat Isotop. 2002 Vol. 56(6):853-6.
34. Aigner RM, Fueger GF, Zinke W, Sill H. 99mTc-tetrofosmin scintigraphy in Hodgkin’s disease. Nucl Med Commun. 1997;18(3):252-7.
35. Chernov VI, Bragina OD, Zelchan RV, Medvedeva AA, Sinilkin IG, Larkina MS, et al. Labeled analogues of somatostatin in the therapy of neuroendocrine tumors. Med Radiology and Radiation Safety. 2017;62(3):42-9. (Russian).
36. Chernov VI, Bragina OD, Sinilkin IG, Medvedeva AA, Zelchan RV. Radionuclide theranostics of malignant tumors. Bull Roentgenol Radiol. 2016;97(5):306-13. (Russian).
37. Ferone D, Semino C, Boschetti M, et al. Initial staging of lymphoma with octreotide and other receptor imaging agents. Sem Nucl Med. 2005;35(3):176-85.
38. Valencak J, Trautinger F, Raderer M, et al. Somatostatin receptor scintigraphy in primary cutaneous T- and B-cell lymphomas. J Eur Acad Dermatol Venereol. 2010;24(1):13-7.
39. Raderer M, Traub T, Formanek M, et al. Somatostatin receptor scintigraphy for staging and follow-up of patients with extraintestinal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT)-type. Brit J Cancer. 2001;85(10):1462-6.
40. Raderer M, Valencak J, Pfeffel F, et al. Somatostatin receptor expression in primary gastric versus nongastric extranodal B-cell lymphoma of mucosa-associated lymphoid tissue type. J Nat Cancer Institute. 1999;91(8):716-8.
41. Li S, Kurtaran A, Li M, et al. 111In-DOTA-DPhe1-Tyr3-octreotide. 111In-DOTA-lanreotide and 67Ga citrate scintigraphy for visualisation of extranodal marginal zone B-cell lymphoma of the MALT type: a comparative study. Eur J Nucl Med Molec Imaging. 2003;30(8):1087-95.
42. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Stasyuk E, Rogov A, et al. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Conference Proceedings. 2016;P.020072-1-020072-4.
43. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Bragina O, Stasyuk E, et al. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016;P. 012054.
44. Zelchan RV, Medvedeva AA, Sinilkin IG, Bragina OD, Chernov VI, Stasyuk ES, et al. A study of the functional suitability of the tumor-neutral radiopharmaceutical 99mTc-1-tio-D-glucose in the experiment. Molecular Med . 2018;16(2):54-7. (Russian).
45. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD. Development of radiopharmaceuticals for radionuclide diagnostics in oncology. Med Visualization. 2016(2):63-6 (Russian).
46. Seidensticker M, Ulrich G, Muehlberg FL, et al. Tumor Cell Uptake of 99mTc-Labeled 1-Thio-β-D-Glucose and 5-Thio-D-Glucose in Comparison with 2-Deoxy-2-[18F]Fluoro-D-Glucose in vitro P. Kinetics, Dependencies, Blockage and Cell Compartment of Accumulation. Mol Imaging Biol. 2014(16):189-98.
47. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121(1):29-40.
48. Ong LC, Jin Y, Song IC, et al. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008;49(10):1145-53.
49. Chernov VI, Dudnikova EA, Zelchan RV, et al. The first experience of using 99mTc-1-thio-D-glucose for single-photon emission computed tomography imaging of lymphomas. Siberian J Oncol. 2018;17 (4):81-7. DOI:https://doi.org/10.21294/1814-4861-2018-17-4-81-7. (Russian).