CONSIDERATION OF THE DYNAMICS OF THE DAILY VARIANCE OF THE INDEX OF MOSURI WHILE MINIMIZING RISK OF SHORT-TERM OPERATIONS ON THE RUSSIAN STOCK MARKET
Abstract and keywords
Abstract (English):
The aim of this work is to develop a model that allows setting a daily interval of the index. The introduction describes the main problems and difficulties associated with forecasting stock markets in General and Russia in particular. In the next part describes in detail the methodology of constructing the model, data preprocessing, parameter selection of autocorrelation. The paper uses such methods as ARIMA, the method of growth indices, the method of artificial neural networks, Fourier spectral analysis, generalization method, two-sample t-test for averages, etc. To assess the results of the study the author used methods of analysis of autocorrelation of the residuals normal distribution of the residuals, the maximum likelihood method, student's t-test, and comparison of forecast based on a row of known (source) data. The evaluation confirmed the hypothesis about the adequacy of the materiality and significance of the model. Based on the model stock strategy is built, designed to minimize investors’ risks. In the discussion so-called "negative results" are given obtained in the course of the study, inadequate models, inappropriate factors, parameters and methods, which had to be abandoned on the way to presented in the result.

Keywords:
Stock market, index MICEX, time series, ARIMA, stop loss.
References

1. Baburov D.V., Grishaeva S.A. Upravlenie riskami na rossiyskom fondovom rynke: problemy i perspektivy [Tekst] / D.V. Baburov, S.A. Grishaeva. - Nauka i ekonomika, 2010. - S. 52-56.

2. Basovskiy L.E. Prognozirovanie i planirovanie v usloviyah rynka [Tekst]/ L.E. Basovskiy: ucheb. posobie. - M.: INFRA-M, 2001. - 260 s.

3. Galustyan M.Zh. Ispol'zovanie metoda glavnyh komponent pri otbore faktorov dlya prognozirovaniya fondovogo rynka Rossii [Tekst] / M.Zh. Galustyan // Izvestiya TulGU. Seriya «Ekonomicheskie i yuridicheskie nauki». - Tula: Izd-vo TulGU, 2016. - Vyp. 2. - Ch. I. - S. 176-183.

4. Egorova N.E., Bahtizin A.R., Torzhevskiy K.A. Ekonomiko-matematicheskiy instrumentariy prognozirovaniya fondovyh rynkov (na primere Rossii) [Tekst] / N.E. Egorova, A.R. Bahtizin, K.A. Torzhevskiy. - M: Rossiyskaya akad. nauk, Uchrezhdenie Rossiyskoy akad. nauk Central'nyy ekonomiko-mat. in-t RAN (CEMI), 2011. - 109 s.

5. Mogilevich E.O., Shvedov A.S. Analiz dinamiki fondovyh indeksov s ispol'zovaniem nechetkih modeley Takagi-Sugeno [Tekst] / E.O. Mogilevich A.S. Shvedov // Ekonomicheskiy zhurnal Vysshey shkoly ekonomiki, 2017. - № 3. S. 434-450.

6. Oveshnikova L.V., Ustinov E.A. Analiz razvitiya fondovogo rynka Rossiyskoy Federacii: prognoznye ocenki [Tekst] / Ekonomika i predprinimatel'stvo. 2016. № 10-3 (75-3). S. 1034-1041.

7. Fedorova E. A., Pankratov K.A. Modelirovanie volatil'nosti fondovogo rynka v period krizisa[Tekst]/ E.A. Fedorova// Finansovaya analitika: problemy i resheniya, 2011. - № 37. S. 21-30.

8. Fedorova E.A., Buzlov D.A. Prognozirovanie fondovogo rynka rossiyskoy federacii s pomosch'yu GARCH-modelirovaniya [Tekst] / E.A. Fedorova, D.A. Buzlov // Finansovaya analitika: problemy i resheniya, 2013. - № 16. S. 2-10.

9. Fedorova E.A., Snyatkova I.N., Sutyagina Yu.N. Analiz zavisimosti mezhdu cenoy na neft', valyutnym kursom i fondovymi rynkami razvivayuschihsya stran [Tekst] / E.A. Fedorova // Finansovaya analitika: problemy i resheniya 2012. - № 41. - S. 14-23.

10. Shapkin A.S., Shapkin V.A. Ekonomicheskie i finansovye riski. Ocenka, upravlenie, portfel' investiciy. [Tekst]: Monografiya // A.S. Shapkin, 2012. - 544 s.

11. Elektronnyy uchebnik StatSoft [Elektronnyy resurs]// URL: http://statsoft.ru/home/textbook/default.htm (Data obrascheniya: 18.01.2018).

12. Ispol'zovanie modeli ARIMA dlya kratkosrochnogo prognozirovaniya povedeniya cenovyh grafikov na valyutnom rynke Forex [Elektronnyy resurs]: Portal magistrov DonNTU. - URL: http://uran.donntu.org/~masters/2007/fvti/karpunova/diss/index.html (Data obrascheniya: 17.01.2018).

13. Primenenie modeli ARIMA-GARCH dlya prognozirovaniya kursa rublya [Elektronnyy resurs]: Finansovyy portal. - URL: https://smart-lab.ru/blog/327500.php (Data obrascheniya: 18.01.2018).

14. Morimune K., Miyazaki K. Arima approach to the unit root analysis of macroeconomic time series/Mathematics and computers in simulation, no. 3-6, pp. 395-403.

Login or Create
* Forgot password?