from 01.01.1975 to 01.01.2021
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Department of Space Science and Engineering, National Central University, Taiwan
Moscow, Russian Federation
Irkutsk, Russian Federation
UDK 53 Физика
We have shown that diamagnetic structures (DSs), which form the basis of the slow quasi-stationary solar wind (SW), are observed in Earth’s orbit as a sequence of DSs of various scales. The analysis of this phenomenon indicates that diamagnetic plasmoids in SW, whose concept was introduced by Karlsson in 2015, are identical to small-scale DSs. We have found that the impact of a sequence of DSs in the slow SW on Earth’s magnetosphere causes an increase in geomagnetic activity. Isolated DSs generate short-term magnetic disturbances whose duration is approximately equal to the DS duration. Hence, a sequence of DSs can cause sawtooth substorms. We emphasize that the interaction of DS in the slow SW under northward interplanetary magnetic field can be associated with penetration of DS high-density plasma into the magnetosphere.
diamagnetic structures of solar wind, diamagnetic plasmoids, streamer chains, sawtooth substorms
1. Borrini G., Wilcox J.M., Gosling J.T., Bame S.J., Feldman W.C. Solar wind helium and hydrogen structure near the helio-spheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, p. 4565.
2. Bostick, W.H. Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 1956, vol. 104, pp. 292-299.
3. Eselevich M.V., Eselevich V.G. Fractal structure of the heliospheric plasma sheet in the Earth’s orbit. Geomagnetism and Aeronomy. 2005, vol. 45, no. 3, pp. 326-336.
4. Eselevich, M.V., Eselevich V.G. Manifestations of the ray structure of the coronal streamer belt in the form of sharp peaks of the solar wind plasma density in the Earth’s orbit. Geomagnetism and Aeronomy. 2006, vol. 46, iss. 6, pp. 770-782.
5. Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991. V. 39. P. 737-744.
6. Eselevich V.G., Fainshtein V.G. On the existence of the heliospheric current sheet without a neutral line. Planetary Space Ssi. 1992, vol. 40, p. 105.
7. Eselevich M.V., Eselevich V.G. The double structure of the coronal streamer belt. Solar Phys. 2006, vol. 235, iss. 1-2, pp. 331-344.
8. Eselevich V.G., Fainshtein V.G., Rudenko G.V. Study of the structure of streamer belts and chains in the solar corona. Solar Phys. 1999, vol. 188, p. 277.
9. Eselevich M., Eselevich V., Fujiki K. Streamer belt and chains as the main sources of quasi-stationary slow solar wind. Solar Phys. 2007, vol. 240, pp. 135-151. DOI:https://doi.org/10.1007/s11207-006-0197-z.
10. Ivanov K., Bothmer V., Cargill P.J., Kharshiladze A., Romashets E.P., Veselovsky I.S. Subsector structure of the interplanetary space. Proc. The Second Solar Cycle and Space Whether Euroconference. Vicvo Equense, Italy. 2002, p. 317.
11. Karlsson T., Brenning N., Nilsson H., Trotignon J.-G., Vallieres X., Facsko G. Localized density enhancements in the magnetosheath: Three-dimensional morphology and possible importance for impulsive penetration. J. Geophys. Res. 2012, vol. 117, no. A03227. DOI:https://doi.org/10.1029/2011JA017059.
12. Karlsson T., Kullen A., Liljeblad E., Brenning N., Nilsson H., Gunell H., Hamrin M. On the origin of magnetosheath plasmoids and their relation to magnetosheath jets. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 9, pp. 7390-7403. DOI:https://doi.org/10.1002/2015JA021487.
13. Keika K., Nakamura R., Baumjohann W., Angelopoulos V., Chi P.J., Glassmeier K.H., et al. Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. J. Geophys. Res. 2009, vol. 114, no. A00C24. DOI:https://doi.org/10.1029/2008JA013445.
14. King J.H., Papitashvili N. One min and 5-min solar wind data sets at the Earth’s bow shock nose // One min and 5-min solar wind data sets at the Earth’s bow shock nose. URL: https://omniweb. gsfc.nasa.gov/html/HROdocum.html. Joe King and Natalia Papitashvili, GSFC/SPDF and ADNET Systems, Inc. (accessed January 16, 2019).
15. Korzhov N.P. Large-scale three-dimensional structure of the interplanetary magnetic field. Solar Phys. 1977, vol. 55, p. 505.
16. Kozyra J.U., Liemohn M.W., Cattell C., Zeeuw D.De, Escoubet C.P., Evans D.S., et al. Solar filament impact on 21 January 2005: Geospace consequences. J. Geophys. Res.: Space Phys. 2013, vol. 119, pp. 5401-5448. DOI:https://doi.org/10.1002/2013JA019748.
17. Lyons L.R., Lee D.-Y., Wang C.-P., Mende S.B. Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. J. Geophys. Res. 2005, vol. 110, no. A08208. DOI:https://doi.org/10.1029/2005JA011089.
18. Parkhomov V.A., Borodkova N.L., Dmitriev A.V., Klimov P.M., Rakhmatulin R.A. The role of solar wind pressure jumps in the initiation and control processes of magnetospheric substorms. Geomagnetism and Aeronomy, 2011, vol. 51, no. 7, pp. 979-993.
19. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V. Abrupt changes of density in sporadic solar wind and their effect on Earth magnetosphere. Cosmic Res. 2015, vol. 53, no. 6, pp. 411-422. DOI:https://doi.org/10.1134/S0010952515050093.
20. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Features of the impact of the solar wind diamagnetic structure on Earth’s magnetosphere. Solar-Terr. Phys. 2017, vol. 3, no. 4, pp. 44-57. DOI:https://doi.org/10.12737/stp-34201705.
21. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Solar wind diamagnetic structures as a source of substorm-like disturbances. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, pp. 55-67. DOI:https://doi.org/10.1016/j.jastp.2018.10.010.
22. Svalgaard L.J., Wilcox W., Duvall T.L. A model combining the solar magnetic field. Solar Phys. 1974, vol. 37, p. 157.
23. Troshichev O.A., Kan Liou, Stauning Peter, Reeves G. Saw-tooth substorms: inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora. Adv. Space Res. 2011, vol. 47, no. 4, pp. 702-709. DOI:https://doi.org/10.1016/j.asr. 2010.09.026.
24. Troshichev O.A, Janzhura A. Space Weather Monitoring by Ground-Based Means: PC Index. Springer Verlag, 2012. 287 p. DOI:https://doi.org/10.1007/978-3-642-16803-1.
25. Wang Y.M., Sheeley N.R., Rich N.B. Coronal pseudostreamers. Astrophys. J. 2007, vol. 685, p. 1340.
26. Winterhalter D., Smith E.J., Burton M.E., Murphy N. The heliospheric plasma sheet. J. Geophys. Res. 1994, vol. 99, p. 6667.
27. Zhou X., Tsurutani B.T. Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 2001, vol. 106, p. 18,957.
28. URL: http://wso.stan-ford.edu (accessed August 12, 2019).
29. URL: http://bdm.iszf.irk.ru (accessed August 10, 2019).
30. URL: http://cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi (accessed August 12, 2019).